LightAutoML: 軽量で高速なAutoMLフレームワーク

  • LightAutoML: AutoML Solution for a Large Financial Services Ecosystem [108.1]
    本稿では、ヨーロッパ大手金融サービス会社向けに開発されたLightAutoMLと呼ばれるAutoMLシステムについて述べる。 当社のフレームワークは、多数のアプリケーションに試験的にデプロイされ、経験豊富なデータサイエンティストのレベルで実行されました。
    論文  参考訳(メタデータ)  参考訳(全文)  (Fri, 3 Sep 2021 13:52:32 GMT)
    • 軽量・高速なAutoMLの紹介。テーブルデータを対象として「L2正則化な線形モデル、LightGBM、Catboost」+「Optunaを用いたTPE」で構成されている。与える情報はターゲットとテーブルデータ、それぞれの列がnumeric、category、datetimeのどれか?という情報とのこと。妥当な構成で妥当な結果が出るんだろうと思う。テーブル間結合に対応しているかは良く分からない。
      • 設計方針は以前紹介した「Fugu AutoML」と同じ(というかテーブルデータを対象とした多くのAutoMLフレームワークが同じような設計)、未公開バージョンではscikit-learn / statsmodelsによる線形回帰が実装されていたりするので設計思想も近しい。(といっても更新停止状態だけど・・・)
      • 個人的にはテーブル間結合機能の有無とLeakage発生回避の工夫が気になる。

AutoML vs 人間によるモデル構築

  • Man versus Machine: AutoML and Human Experts’ Role in Phishing Detection [4.1]
    本稿では,10種類のフィッシングデータセット上での6つの最先端AutoMLフレームワークのパフォーマンスを比較した。 以上の結果から,AutoMLベースのモデルでは,複雑な分類タスクにおいて,手作業で開発した機械学習モデルよりも優れていることが示唆された。
    論文  参考訳(メタデータ)   (Fri, 27 Aug 2021 09:26:20 GMT)
    • AutoMLと手作業で作成したモデルを比較、AutoMLの方が優れていた…という報告。なのだが、手作業のモデルはAutoMLと同じデータ(1 Tableのデータ)でscikit-learnの手法(Logistic Regression, SVM, KNN, Decision Tree, Random Forest, Multi-layer Perceptron, Gaussian Naive Bayes)+手作業でハイパーパラメータをランダムサーチでチューニングしただけ。比較方法がイマイチな気がする。
    • 手作業というからには特徴量作成部分がキーになるはずだし、比較対象にはLightGBMやXGB辺りは入れるべきと思う。複数テーブルのデータに対してドメイン知識に基づいて特徴量作れば挙げられたAutoMLには負けないのではないかと思う。
      • 複数テーブルを扱えるAutoMLの実装は多くなくこれはこれでフェアじゃないかもだが。(放置しているけど)筆者が作っているFuguMLは複数テーブルを扱える実装になっていて未だにテーブル結合に対応した実装が少ないのは謎。
    • 色々言いたいことはあるが、AutoMLの実装によって精度に意外な差があるのが面白い。ドメイン知識を持つ専門家がパイプラインのループに不可欠であるという指摘はその通りだと思う。

AutoVideo: ビデオからの行動認識AutoML

  • AutoVideo: An Automated Video Action Recognition System [38.4]
    AutoVideoは、自動ビデオアクション認識のためのPythonシステムである。 7つのアクション認識アルゴリズムと様々な前処理モジュールをサポートする。 AutoMLのサーチと簡単に組み合わせることができる。
    論文  参考訳(メタデータ)   (Mon, 9 Aug 2021 17:53:32 GMT)

AutoFormer: Transformerのアーキテクチャサーチ

  • AutoFormer: Searching Transformers for Visual Recognition [97.6]
    本稿では,視覚トランスフォーマー検索専用のワンショットアーキテクチャ検索フレームワークであるAutoFormerを提案する。 AutoFormerは、スーパーネットトレーニング中に同じレイヤ内の異なるブロックの重みを絡み合わせる。 我々は、AutoFormer-tiny/small/baseが5.7M/22.9M/53.7Mパラメータを持つImageNetで74.7%/81.7%/82.4%のtop-1精度を達成したことを示す。
    論文  参考訳(メタデータ)   (Thu, 1 Jul 2021 17:59:30 GMT)
    • 画像を対象としたTransformerで効率的なアーキテクチャサーチを行うという論文。少ないパラメータで優れた性能を出せる。
    • コード等はhttps://github.com/microsoft/automlから参照可能なるとのこと。