コンテンツへスキップ
- LightAutoML: AutoML Solution for a Large Financial Services Ecosystem [108.1]
本稿では、ヨーロッパ大手金融サービス会社向けに開発されたLightAutoMLと呼ばれるAutoMLシステムについて述べる。 当社のフレームワークは、多数のアプリケーションに試験的にデプロイされ、経験豊富なデータサイエンティストのレベルで実行されました。
論文 参考訳(メタデータ) 参考訳(全文) (Fri, 3 Sep 2021 13:52:32 GMT)- 軽量・高速なAutoMLの紹介。テーブルデータを対象として「L2正則化な線形モデル、LightGBM、Catboost」+「Optunaを用いたTPE」で構成されている。与える情報はターゲットとテーブルデータ、それぞれの列がnumeric、category、datetimeのどれか?という情報とのこと。妥当な構成で妥当な結果が出るんだろうと思う。テーブル間結合に対応しているかは良く分からない。
- 設計方針は以前紹介した「Fugu AutoML」と同じ(というかテーブルデータを対象とした多くのAutoMLフレームワークが同じような設計)、未公開バージョンではscikit-learn / statsmodelsによる線形回帰が実装されていたりするので設計思想も近しい。(といっても更新停止状態だけど・・・)
- 個人的にはテーブル間結合機能の有無とLeakage発生回避の工夫が気になる。