Dataset distillationを用いた医療画像共有

  • Dataset Distillation for Medical Dataset Sharing [38.7]
    データセットの蒸留は、トレーニングされたモデルが元の大きなデータセットと同等のパフォーマンスを達成するように、小さなデータセットを合成することができる。 新型コロナウイルスの胸部X線画像データセットによる実験結果から,胸部X線画像が不足していても高い検出性能が得られた。
    論文  参考訳(メタデータ)   (Thu, 29 Sep 2022 07:49:20 GMT)
    • Dataset Distillationを医療画像のようなプライバシーが重要な分野に適用するという論文。プライバシー保護とコスト低減を両立できそうな点が面白い
      • 各種攻撃への耐性に興味津々

同じグループからデータセット蒸留法も提案されている。

  • Dataset Distillation using Parameter Pruning [38.7]
    データセットの蒸留は、トレーニングされたモデルが元の大きなデータセットと同等に高いパフォーマンスを達成するように、小さなデータセットを合成することができる。 提案手法は, より堅牢な蒸留データセットを合成し, 蒸留プロセスにおいて, 難解なパラメータを抽出することにより蒸留性能を向上させる。
    論文  参考訳(メタデータ)   (Thu, 29 Sep 2022 07:58:32 GMT)

転送学習におけるソースデータセットの役割

  • A Data-Based Perspective on Transfer Learning [76.3]
    転送学習におけるソースデータセットの合成の役割について,より詳しく検討する。 我々のフレームワークは、転送学習の脆さをピンポインティングするなど、新しい機能を生み出します。
    論文  参考訳(メタデータ)   (Tue, 12 Jul 2022 17:58:28 GMT)
    • 事前学習用データから不要なものを取り除くことで最終性能が上がること、および、そのフレームワークの提案
      • 頑健性の変化についても知りたいところ。。
    • リポジトリはGitHub – MadryLab/data-transfer

小さなデータで効率的に学習するためのDataset distillation

  • Dataset Distillation by Matching Training Trajectories [75.9]
    そこで本研究では,実データと同じような状態にネットワークを誘導するために,蒸留データを最適化する新しい定式化を提案する。 ネットワークが与えられたら、蒸留データを何回か繰り返して訓練し、合成訓練されたパラメータと実データで訓練されたパラメータとの距離に関して蒸留データを最適化する。 本手法は既存の手法よりも優れており,高解像度の視覚データを蒸留することができる。
    論文  参考訳(メタデータ)   (Tue, 22 Mar 2022 17:58:59 GMT)