コンテンツへスキップ
- Towards Web Phishing Detection Limitations and Mitigation [21.7]
フィッシングサイトが機械学習に基づく検出をバイパスする方法を示す。 100Kフィッシング・ベナンサイトを用いた実験では、有望な精度(98.8%)を示した。 本稿では,ロジスティック回帰に基づくよりレジリエントなモデルであるAnti-SubtlePhishを提案する。
論文 参考訳(メタデータ) (Sun, 3 Apr 2022 04:26:04 GMT)- フィッシングサイトがMLベースの検出をバイパスしている方法の調査とその対策の提案。13,000のフィッシングページにわたる詳細なケーススタディを行っているとのことで面白い内容。
- 提案されているAnti-SubtlePhishは主として特徴量の強化を行っている。最終的なレンダリング結果を使うことが重要そう。
- Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets [53.9]
トレーニングデータセットを有害にすることができる敵が、このデータセットでトレーニングされたモデルに、他の当事者のプライベート詳細を漏洩させる可能性があることを示す。 私たちの攻撃は、メンバーシップ推論、属性推論、データ抽出に効果的です。 私たちの結果は、機械学習のためのマルチパーティプロトコルにおける暗号化プライバシ保証の関連性に疑問を投げかけました。
論文 参考訳(メタデータ) (Thu, 31 Mar 2022 18:06:28 GMT)- 学習用のデータセットに攻撃をすることで、プライバシーに関連するデータを漏洩させることができるとの報告。先行研究ではモデルの保護は困難とのこと。
- 「Untrusted data is not only a threat to integrity.」「Large neural networks are trained on massive datasets which are hard to curate.」ですよね・・・