Truth Serum: 秘密データの漏洩攻撃

  • Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets [53.9]
    トレーニングデータセットを有害にすることができる敵が、このデータセットでトレーニングされたモデルに、他の当事者のプライベート詳細を漏洩させる可能性があることを示す。 私たちの攻撃は、メンバーシップ推論、属性推論、データ抽出に効果的です。 私たちの結果は、機械学習のためのマルチパーティプロトコルにおける暗号化プライバシ保証の関連性に疑問を投げかけました。
    論文  参考訳(メタデータ)   (Thu, 31 Mar 2022 18:06:28 GMT)
    • 学習用のデータセットに攻撃をすることで、プライバシーに関連するデータを漏洩させることができるとの報告。先行研究ではモデルの保護は困難とのこと。
    • 「Untrusted data is not only a threat to integrity.」「Large neural networks are trained on massive datasets which are hard to curate.」ですよね・・・

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です