Web Phishing Detection回避とその対策

  • Towards Web Phishing Detection Limitations and Mitigation [21.7]
    フィッシングサイトが機械学習に基づく検出をバイパスする方法を示す。 100Kフィッシング・ベナンサイトを用いた実験では、有望な精度(98.8%)を示した。 本稿では,ロジスティック回帰に基づくよりレジリエントなモデルであるAnti-SubtlePhishを提案する。
    論文  参考訳(メタデータ)   (Sun, 3 Apr 2022 04:26:04 GMT)
    • フィッシングサイトがMLベースの検出をバイパスしている方法の調査とその対策の提案。13,000のフィッシングページにわたる詳細なケーススタディを行っているとのことで面白い内容。
    • 提案されているAnti-SubtlePhishは主として特徴量の強化を行っている。最終的なレンダリング結果を使うことが重要そう。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です