NVIDIA Nemotron Parse 1.1 / Nemotron-Flash

  • NVIDIA Nemotron Parse 1.1 [52.6]
    Nemotron-Parse-1.1は軽量な文書解析とOCRモデルである。 一般的なOCR、マークダウンフォーマット、構造化テーブル解析、画像、チャート、ダイアグラムからのテキスト抽出など、改善された機能を提供する。 我々は、より広範なNemotron-VLM-v2データセットの一部として、トレーニングデータのサブセットとともに、Huggingfaceのモデルウェイトと最適化されたNIMコンテナを公開しています。
    論文  参考訳(メタデータ)   (Tue, 25 Nov 2025 16:41:25 GMT)
  • 「Nemotron-Parse-1.1 follows an encoder-decoder architecture with 885M parameters, including a compact 256M-parameter language decoder.」というOCR関連モデル。(タスクにフィットしているということもあるのだろうが)decoder onlyではない。
  • リポジトリはnvidia/NVIDIA-Nemotron-Parse-v1.1-TC · Hugging Face
  • Nemotron-Flash: Towards Latency-Optimal Hybrid Small Language Models [97.6]
    本研究の目的は、SLMのリアルタイムレイテンシの主要な決定要因を特定し、SLMの設計とトレーニングのための一般化可能な原則と方法論を提供することである。 我々はNemotron-Flashと呼ばれるハイブリッドSLMの新たなファミリーを導入し、最先端SLMの精度・効率のフロンティアを大幅に向上させる。
    論文  参考訳(メタデータ)   (Mon, 24 Nov 2025 08:46:36 GMT)
  • 「Rather than merely offering a smaller LLM, this work re-imagines small models from the perspective of real- world latency and throughput, systematically explor- ing the key architectural and training factors essential for developing latency-optimal SLMs. By analyzing optimal depth–width ratios, strategically combining efficient attention operators through an evolutionary search framework, and enhancing training with weight normalization and meta tokens, we establish a comprehensive framework that significantly improves both real-device latency and accuracy, and deliver the Nemotron-Flash model family that advances the SOTA accuracy–latency frontier.」とアーキテクチャ設計に踏み込んでのSLMの探求
  • リポジトリはnvidia/Nemotron-Flash-3B · Hugging Face

Claude Opus 4.5, DeepSeekMath-V2, DR Tulu, Qwen3-VL, HunyuanVideo 1.5

先週はOpus 4.5の発表(Introducing Claude Opus 4.5 \ Anthropic)があり、Anthropic Clodeが特にコード生成においてさすがの性能を見せた。

公開モデル関連では数学に強いDeepSeekMath-V2(deepseek-ai/DeepSeek-Math-V2 · Hugging Face)、Deep Researchに強いDR Tulu(DR Tulu: An open, end-to-end training recipe for long-form deep research | Ai2)やQwen3-VL、HunyuanVideo 1.5のテクニカルレポートに注目という状況。

  • DR Tulu: Reinforcement Learning with Evolving Rubrics for Deep Research [152.2]
    ディープ・リサーチ・モデルは、多段階の研究を行い、長文でよく理解された回答を生成する。 ほとんどのオープンディープリサーチモデルは、検証可能な報酬を伴う強化学習を通じて、短い形式のQAタスクで訓練されている。 我々は、オープンエンドで長期のディープリサーチのために直接訓練された最初のオープンモデルであるDeep Research Tulu (DR Tulu-8B)を開発した。
    論文  参考訳(メタデータ)   (Wed, 26 Nov 2025 14:52:10 GMT)
  • 「In this paper, we introduce Deep Research Tulu (DR Tulu-8B), the first open model that is directly trained for open-ended, long-form deep research tasks. To address the challenge of verification in long-form tasks, DR Tulu is first finetuned on high-quality, naturally occurring user data, and then trained via a new method we call Reinforcement Learning with Evolving Rubrics (RLER), in which we construct and maintain rubrics that co-evolve with the policy model during training.」とDeepResearchに特化したモデルの提案。強化学習部分も興味深い構成。
  • リポジトリはGitHub – rlresearch/dr-tulu: Official repository for DR Tulu: Reinforcement Learning with Evolving Rubrics for Deep Research
  • Qwen3-VL Technical Report [153.4]
    Qwen3-VLは、これまでで最も有能な視覚言語モデルであり、幅広いマルチモーダルベンチマークで優れた性能を実現している。 最大256Kトークンのインターリーブコンテキストをサポートし、テキスト、画像、ビデオをシームレスに統合する。 Qwen3-VLは3つの中核柱を提供する: (i) 非常に強い純粋テキスト理解、いくつかのケースにおいて同等のテキストのみのバックボーンを超える、 (ii) テキスト入力とインターリーブされたマルチモーダル入力の両方に256Kのネイティブウィンドウを持つ堅牢な長期理解、 (iii) シングルイメージ、マルチイメージ、ビデオタスクをまたいだ高度なマルチモーダル推論。
    論文  参考訳(メタデータ)   (Wed, 26 Nov 2025 17:59:08 GMT)
  • 「The Qwen3-VL framework integrates a vision encoder and a language model decoder to process multimodal inputs, including text, images, and video. The vision encoder is specifically designed to handle dynamic, native-resolution visual inputs, mapping them to visual tokens of variable length.」という構成、商用モデルと比較可能な性能、一部は上回る。
  • リポジトリはGitHub – QwenLM/Qwen3-VL: Qwen3-VL is the multimodal large language model series developed by Qwen team, Alibaba Cloud.

OmniScientist: Toward a Co-evolving Ecosystem of Human and AI Scientists 

  • OmniScientist: Toward a Co-evolving Ecosystem of Human and AI Scientists [47.4]
    我々は、人間の研究の基盤となるメカニズムをAI科学ワークフローにエンコードするフレームワークであるOmniScientistを紹介します。 OmniScientistは、データ基盤全体にわたるエンドツーエンドの自動化、文献レビュー、研究のアイデア、実験の自動化、科学的執筆、ピアレビューを実現している。 このインフラは、エージェントが人間の知識システムを理解し、活用するだけでなく、協力し、共同開発することを可能にする。
    論文  参考訳(メタデータ)   (Fri, 21 Nov 2025 03:55:19 GMT)
  • 「OmniScientist not only achieves end-to-end automation across data foundation, literature review, research ideation, experiment automation, scientific writing, and peer review, but also provides comprehensive infrastructural support by simulating the human scientific system, comprising: (1) a structured knowledge system built upon citation networks and conceptual correlations; (2) a collaborative research protocol (OSP), which enables seamless multi-agent collaboration and human researcher participation; and (3) an open evaluation platform (ScienceArena) based on blind pairwise user voting and Elo rankings. This infrastructure em- powers agents to not only comprehend and leverage human knowledge systems but also to collaborate and co-evolve, fostering a sustainable and scalable innovation ecosystem.」と非常に強力なエージェントであることを主張、ケーススタディで有効性を確認している。現時点ではAI研究が主たるターゲットになっているよう。
  • OmniScientistにサイトが公開されている

Evo-Memory: Benchmarking LLM Agent Test-time Learning with Self-Evolving Memory 

  • Evo-Memory: Benchmarking LLM Agent Test-time Learning with Self-Evolving Memory [89.7]
    Evo-Memoryは、大規模言語モデル(LLM)エージェントで自己進化型メモリを評価するための、ストリーミングベンチマークとフレームワークである。 10以上の代表的なメモリモジュールを評価し、10種類の多ターンゴール指向およびシングルターン推論およびQAデータセットで評価した。
    論文  参考訳(メタデータ)   (Tue, 25 Nov 2025 21:08:07 GMT)
  • 「The benchmark covers both multi-turn goal-oriented environments and single-turn reasoning or problem-solving tasks, explicitly testing whether LLMs can accumulate knowledge and refine strategies during deployment, a process we term test-time evolution. We unify and implement over ten representative memory modules, including retrieval-based, workflow, and hierarchical memory systems, to study their adaptation behavior. To further examine experience reuse, we introduce ExpRAG, a simple retrieval-based baseline that leverages prior task experiences, and further develop ReMem, an advanced action–think–memory refine pipeline that tightly integrates reasoning, action, and memory updates for continual improvement.」とのこと。比較が難しい分野でありとてもありがたいベンチマーク。シンプルな戦略が好スコアを出している点も興味深い。。。

Future Is Unevenly Distributed: Forecasting Ability of LLMs Depends on What We’re Asking 

  • Future Is Unevenly Distributed: Forecasting Ability of LLMs Depends on What We’re Asking [1.1]
    本研究では,モデルカットオフ日を超えて発生した事象に関する実世界の質問に対して,モデルファミリの異なるモデルファミリで,予測性能がどう変化するかを検討する。 我々は,文脈,質問タイプ,外部知識が精度やキャリブレーションにどのように影響するか,事実的ニュースコンテキストの追加が信念の形成や失敗モードをどう修正するかを分析する。
    論文  参考訳(メタデータ)   (Sun, 23 Nov 2025 10:41:19 GMT)
  • LLMの予測能力の検証と失敗事例の分析、「Forecasting competence in LLMs is highly uneven, reflecting not only data coverage but the cognitive framing embed- ded in prompts. While we may expect adding recent news should improve forecasting accuracy, we find that sometimes it does while at other times it makes it worse because of definition drift, rumour anchoring and recency bias etc. emergent, and invite design of benchmarks that disentangle knowledge recall from probabilistic inference.」はまぁそうだろうと思う。

TimeViper: A Hybrid Mamba-Transformer Vision-Language Model for Efficient Long Video Understanding

  • TimeViper: A Hybrid Mamba-Transformer Vision-Language Model for Efficient Long Video Understanding [48.5]
    我々は、長いビデオ理解の課題に取り組むために設計されたハイブリッドビジョン言語モデルであるTimeViperを紹介する。 TimeViperは、状態空間モデルの効率性とアテンションメカニズムの表現性を組み合わせたハイブリッドなMamba-Transformerバックボーンを採用している。 この研究は、ハイブリッドなMamba-Transformerアーキテクチャを開発し、解釈し、圧縮するための最初のステップである。
    論文  参考訳(メタデータ)   (Thu, 20 Nov 2025 17:48:21 GMT)
  • Mambaハイブリッドの構造で「TimeViper to process hour-long videos exceeding 10,000 frames」という長い動画を扱えるモデルの提案
  • リポジトリはTimeViper: A Hybrid Mamba-Transformer Vision-Language Model for Efficient Long Video Understanding

When AI Agents Collude Online: Financial Fraud Risks by Collaborative LLM Agents on Social Platforms

AgentEvolver: Towards Efficient Self-Evolving Agent System 

  • AgentEvolver: Towards Efficient Self-Evolving Agent System [51.5]
    本稿では,自律型エージェント学習を駆動する自己進化型エージェントシステムであるAgentEvolverを紹介する。 AgentEvolverは、セルフクエスト、セルフナビゲート、セルフコントリビューションという3つのシナジスティックメカニズムを導入している。 予備実験により、AgentEvolverは従来のRLベースのベースラインと比較して、より効率的な探索、より優れたサンプル利用、より高速な適応を実現していることが示された。
    論文  参考訳(メタデータ)   (Fri, 14 Nov 2025 01:49:03 GMT)
  • 「The self-evolving process is driven by three synergistic mechanisms: Self-questioning for autonomous task generation, Self-navigating for experience- guided exploration, and Self-attributing for fine-grained credit assignment.」からなる自己改善アプローチ。
  • リポジトリはGitHub – modelscope/AgentEvolver: AgentEvolver: Towards Efficient Self-Evolving Agent System

Agent0: Unleashing Self-Evolving Agents from Zero Data via Tool-Integrated Reasoning

  • Agent0: Unleashing Self-Evolving Agents from Zero Data via Tool-Integrated Reasoning [84.7]
    大規模言語モデル(LLM)エージェントは、人間の計算データへの依存によって制約される。 我々は,外部データを持たない高性能エージェントを進化させる完全自律型フレームワークであるAgent0を紹介する。 Agent0は推論能力を大幅に向上させ、Qwen3-8B-Baseモデルを数学的推論で18%改善し、一般的な推論ベンチマークで24%改善した。
    論文  参考訳(メタデータ)   (Thu, 20 Nov 2025 05:01:57 GMT)
  • 「we initialize two functionally distinct agents: an execu- tor agent and a curriculum agent. These agents co-evolve through a symbiotic competition: the curriculum agent is trained using RL (Shao et al , 2024) to propose frontier tasks that precisely challenge the executor’s current capabilities, using the executor’s uncertainty (i.e., self-consistency across multiple answers) and its frequency of tool use as reward signals. Concurrently, the executor agent is trained via RL to successfully solve these tasks, optimizing on a filtered set of challenging problems generated by the frozen curriculum agent and using pseudo-labels derived from its own majority voting. Equipping the executor with a tool enhances its problem-solving abilities, which in turn com- pels the tool-equipped curriculum agent to generate more complex, tool-based curricula.」という複数エージェントを活用した共進化なフレームワーク。Agent構築においても近いアプローチが流行っているように思う。
  • リポジトリはGitHub – aiming-lab/Agent0: [arXiv’25] Agent0: Unleashing Self-Evolving Agents from Zero Data via Tool-Integrated Reasoning

TiDAR: Think in Diffusion, Talk in Autoregression

  • TiDAR: Think in Diffusion, Talk in Autoregression [59.9]
    TiDARは、Diffusionでトークン(Thinking)をドラフトし、最終的な出力(Talking)をAutoRegressivelyにサンプリングするシーケンスレベルのハイブリッドアーキテクチャである。 TiDARはARモデルと品質ギャップを埋める最初のアーキテクチャであり、毎秒4.71倍から5.91倍のトークンを提供する。
    論文  参考訳(メタデータ)   (Thu, 13 Nov 2025 01:18:11 GMT)
  • Diffusion modelとAuto regressiveのハイブリッド「We introduce TiDAR, a sequence-level hybrid architecture that drafts tokens (Thinking) in Diffusion and samples final outputs (Talking) AutoRegressively – all within a single forward pass using specially designed structured attention masks.」
  • 「We extensively evaluate TiDAR against AR models, speculative decoding, and diffusion variants across generative and likelihood tasks at 1.5B and 8B scales. Thanks to the parallel drafting and sampling as well as exact KV cache support, TiDAR outperforms speculative decoding in measured throughput and surpasses diffusion models like Dream and Llada in both efficiency and quality. Most notably, TiDAR is the first architecture to close the quality gap with AR models while delivering 4.71× to 5.91× more tokens per second.」とスケールすることが確認できているのがすごい。