GR00T N1: An Open Foundation Model for Generalist Humanoid Robots

AgiBot World Colosseo: A Large-scale Manipulation Platform for Scalable and Intelligent Embodied Systems

  • AgiBot World Colosseo: A Large-scale Manipulation Platform for Scalable and Intelligent Embodied Systems [88.3]
    AgiBot Worldは、217のタスクにまたがる100万以上のトラジェクトリを5つのデプロイメントシナリオで構成した大規模なプラットフォームである。 AgiBot Worldは高品質で多様なデータ配信を保証する。 GO-1は、現実世界のデクスタラスタスクや長距離タスクにおいて例外的な能力を示す。
    論文  参考訳(メタデータ)   (Sun, 09 Mar 2025 15:40:29 GMT)
  • 「1) We construct AgiBot World dataset, a multifarious robot learning dataset accompanied by opensource tools to advance research on policy learning at scale.」という大規模データセット構築と「2) We propose GO1, a robot foundation policy using latent action representations to unlock web-scale pre-training on heterogeneous data.」の提案。 Shanghai AI Lab,、AgiBot Inc. 、Shanghai Innovation Instituteによる成果。この領域もLLM的な進化となるのだろうか…。
  • リポジトリはGitHub – OpenDriveLab/AgiBot-World: The Large-scale Manipulation Platform for Scalable and Intelligent Embodied Systems、プロジェクトサイトはAgiBot World Colosseo | OpenDriveLab

Moto: Latent Motion Token as the Bridging Language for Robot Manipulation 

  • Moto: Latent Motion Token as the Bridging Language for Robot Manipulation [66.2]
    我々はMotoを紹介する。Motoは、映像コンテンツをラテントモーションTokenizerでラテントモーションTokenシーケンスに変換する。 我々は、モーショントークンによるMoto-GPTの事前学習を行い、多様な視覚的動きの知識を捉えることができる。 実際のロボット動作に先立って学習した動きを転送するために、潜伏した動きのトークン予測と実際のロボット制御をシームレスにブリッジするコファインチューニング戦略を実装した。
    論文  参考訳(メタデータ)   (Thu, 05 Dec 2024 18:57:04 GMT)
  • 「This paper introduces Moto, a novel method that uses latent motion tokens as a “language” interface to bridge generative pre-training on video data with precise robot control.」という手法の提案。潜在的な意味というか意図というかをTokenシーケンスにして言語として扱うということ、かつ、それが有効というのは興味深い。
  • プロジェクトサイトはMoto

Neural Fields in Robotics: A Survey 

  • Neural Fields in Robotics: A Survey [39.9]
    Neural Fieldsは、コンピュータビジョンとロボット工学における3Dシーン表現の変革的アプローチとして登場した。 この調査は、ロボット工学における彼らの応用を探求し、知覚、計画、制御を強化する可能性を強調している。 それらのコンパクトさ、メモリ効率、微分可能性、基礎モデルと生成モデルとのシームレスな統合は、リアルタイムアプリケーションに理想的です。
    論文  参考訳(メタデータ)   (Sat, 26 Oct 2024 16:26:41 GMT)
  • 「This paper provides a thorough review of Neural Fields in robotics, categorizing applications across various domains and evaluating their strengths and limitations, based on over 200 papers.」というサーベイ、ロボット分野で研究・応用が広がっているとのこと。
  • リポジトリはNeural Fields in Robotics: A Survey