Claim Verification in the Age of Large Language Models: A Survey 

  • Claim Verification in the Age of Large Language Models: A Survey [37.3]
    本稿では,Large Language Models (LLMs) を用いた最近のクレーム検証フレームワークについて概説する。 これらのフレームワークで使用されるクレーム検証パイプラインのさまざまなコンポーネントを詳述する。
    論文  参考訳(メタデータ)   (Mon, 26 Aug 2024 14:45:03 GMT)
  • LLM時代のclaim verification (fact verification)に関するサーベイ。
  • LLMによって大きな影響を受けている分野

Towards Graph Prompt Learning: A Survey and Beyond 

  • Towards Graph Prompt Learning: A Survey and Beyond [38.6]
    大規模”事前訓練と迅速な学習”パラダイムは、顕著な適応性を示している。 この調査は、この分野における100以上の関連する研究を分類し、一般的な設計原則と最新の応用を要約する。
    論文  参考訳(メタデータ)   (Mon, 26 Aug 2024 06:36:42 GMT)
  • グラフにおけるPromptLearningのサーベイ
  • 自然言語(LLM)では既に一般的だが、「While prompt engineering has been extensively studied and applied in NLP and CV , its application in graph learning remains relatively unexplored.」とのこと。データ構造の差は大きいので様々な考慮点がある。

A Survey on Evaluating Large Language Models in Code Generation Tasks

  • A Survey on Evaluating Large Language Models in Code Generation Tasks [30.3]
    本稿では,コード生成タスクにおけるLarge Language Models (LLMs) の性能評価に使用される現在の手法と指標について概説する。 自動ソフトウェア開発の需要が急速に増加し、LLMはコード生成の分野で大きな可能性を示してきた。
    論文  参考訳(メタデータ)   (Thu, 29 Aug 2024 12:56:06 GMT)
  • 盛り上がってきているコード生成タスクについて、その評価手法をまとめたサーベイ
  • 機械翻訳でも一般的な「Evaluation Based on Similarity」のほか、「Execution-Based Evaluation」、「 Feedback-Based Evaluation」などがあって興味深い。

Image Segmentation in Foundation Model Era: A Survey 

  • Image Segmentation in Foundation Model Era: A Survey [99.2]
    イメージセグメンテーションにおける現在の研究は、これらの進歩に関連する特徴、課題、解決策の詳細な分析を欠いている。 本調査は、FM駆動画像セグメンテーションを中心とした最先端の研究を徹底的にレビューすることで、このギャップを埋めようとしている。 現在の研究成果の広さを包括する,300以上のセグメンテーションアプローチの概要を概観する。
    論文  参考訳(メタデータ)   (Fri, 23 Aug 2024 10:07:59 GMT)
  • 画像におけるセグメンテーションのサーベイ
  • 「Image segmentation is a long-standing challenge in computer vision, studied continuously over several decades, as evidenced by seminal algorithms such as N-Cut, FCN, and MaskFormer.」、「With the advent of foundation models (FMs), contemporary segmentation methodologies have embarked on a new epoch by either adapting FMs (e g , CLIP, Stable Diffusion, DINO) for image segmentation or developing dedicated segmentation foundation models (e g , SAM).
    」とのことでこの分野も激変している。

Controllable Text Generation for Large Language Models: A Survey 

  • Controllable Text Generation for Large Language Models: A Survey [27.1]
    本稿では,大規模言語モデルにおける制御可能なテキスト生成の最近の進歩を体系的にレビューする。 我々はCTGタスクをコンテンツ制御と制御の2つの主要なタイプに分類する。 現在の研究における重要な課題には、流用率の低減や実用性といった課題に対処する。
    論文  参考訳(メタデータ)   (Thu, 22 Aug 2024 17:59:04 GMT)
  • Controllable Text Generationのサーベイ、LLM全般としても良い資料で広範な内容。サーベイの構造はCTGSurvey/figures/framework.png at main · IAAR-Shanghai/CTGSurvey · GitHub
  • リポジトリはGitHub – IAAR-Shanghai/CTGSurvey

Computer Vision Model Compression Techniques for Embedded Systems: A Survey

  • Computer Vision Model Compression Techniques for Embedded Systems: A Survey [75.4]
    本稿では,コンピュータビジョンタスクに適用される主モデル圧縮技術について述べる。 本稿では,圧縮サブ領域の特性について述べるとともに,異なるアプローチを比較し,最適な手法を選択する方法について論じる。 初期の実装課題を克服する上で、研究者や新しい実践者を支援するためのコードも共有しています。
    論文  参考訳(メタデータ)   (Thu, 15 Aug 2024 16:41:55 GMT)
  • CVを対象としたモデル圧縮技術のサーベイ
  • リポジトリはGitHub – venturusbr/cv-model-compression、サンプルコードが提供されているサーベイは珍しい印象

A Survey on Model MoErging: Recycling and Routing Among Specialized Experts for Collaborative Learning

  • A Survey on Model MoErging: Recycling and Routing Among Specialized Experts for Collaborative Learning [136.9]
    MoErgingは、専門家のモデルをリサイクルして、パフォーマンスや一般化を改善した集約システムを構築することを目的としている。 MoErgingメソッドの重要なコンポーネントは、特定の入力やアプリケーションに使用する専門家モデルを決定するルータの作成である。 このサーベイには、キーデザインの選択をカタログ化し、各手法に適した適用方法を明確にするための新しい分類が含まれている。
    論文  参考訳(メタデータ)   (Tue, 13 Aug 2024 17:49:00 GMT)
  • いわゆるMoE:Mixture-of-Expertsよりも広い概念であるMoErging(a new paradigm for decentralized model development that aims to recycle expert models trained asynchronously by distributed contributors.)のサーベイ

Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities

  • Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.4]
    モデルマージは、機械学習コミュニティにおける効率的なエンパワーメント技術である。 これらの手法の体系的かつ徹底的なレビューに関する文献には大きなギャップがある。
    論文  参考訳(メタデータ)   (Wed, 14 Aug 2024 16:58:48 GMT)
  • 最近、よく話題に上がるモデルマージに関するサーベイ

Deep Generative Models in Robotics / Deep Reinforcement Learning for Robotics

AIとロボティクスの融合は重要な研究分野。近年だと生成AIとの融合が話題だが、深層強化学習に関しても研究が多い。この分野のサーベイはとてもありがたい。

  • Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations [52.1]
    近年、ロボット学習コミュニティは、大規模なデータセットの複雑さを捉えるために、深層生成モデルを使うことへの関心が高まっている。 本稿では,エネルギーベースモデル,拡散モデル,アクションバリューマップ,生成的敵ネットワークなど,コミュニティが探求してきたさまざまなモデルについて述べる。 また,情報生成から軌道生成,コスト学習に至るまで,深層生成モデルを用いた様々なアプリケーションについて述べる。
    論文  参考訳(メタデータ)   (Thu, 08 Aug 2024 11:34:31 GMT)
  • 生成モデルとロボティクスに関するサーベイ。
  • Deep Reinforcement Learning for Robotics: A Survey of Real-World Successes [44.6]
    強化学習(RL)は、広範囲のアプリケーションで非常に有望である。 ロボットの問題は、物理世界との相互作用の複雑さとコストから起因して、RLの応用に根本的な困難をもたらす。 この調査は、RLの能力を活用して一般的な実世界のロボットシステムを構築するための、RLの実践者とロボティクスの両方に洞察を提供するように設計されている。
    論文  参考訳(メタデータ)   (Wed, 7 Aug 2024 04:35:38 GMT)
  • 深層強化学習とロボティクスに関するサーベイ。

Fairness and Bias Mitigation in Computer Vision: A Survey 

  • Fairness and Bias Mitigation in Computer Vision: A Survey [61.0]
    コンピュータビジョンシステムは、高精細な現実世界のアプリケーションにますますデプロイされている。 歴史的または人為的なデータにおいて差別的な傾向を伝播または増幅しないことを確実にする必要がある。 本稿では,コンピュータビジョンの文脈における現在進行中の傾向と成功をまとめた,公平性に関する総合的な調査を行う。
    論文  参考訳(メタデータ)   (Mon, 05 Aug 2024 13:44:22 GMT)
  • コンピュータビジョンにおける公平性のサーベイ。
  • 生成モデルの流行で注目されている分野であり、研究の進展もとても速い。