コンテンツへスキップ
- The Earth is Flat? Unveiling Factual Errors in Large Language Models [89.9]
ChatGPTのような大規模言語モデル(LLM)は、事前学習や微調整の知識が豊富にあるため、様々な応用がある。 それにもかかわらず、医療、ジャーナリズム、教育といった重要な分野に懸念を抱き、事実と常識の誤りを引き起こす傾向にある。 LLMにおける事実不正確な事実を明らかにすることを目的とした,新しい自動テストフレームワークであるFactCheckerを紹介する。
論文 参考訳(メタデータ) (Mon, 1 Jan 2024 14:02:27 GMT)
- WIkidataをベースに 3種類(Yes-No, Multiple-Choice, WH (whで始まる疑問詞を使った質問))のファクトチェックテストデータFactCheckerを構築したとの報告、ルールベースの要素が多い。
- 「FactChecker can substantially enhance the factual accuracy, resulting in an average improvement of 6.5% for the ICL method, and a notable enhancement of 33.2% for the fine-tuning method.」というのも興味深い(が、この評価を解釈するのは難しそう…)、コード等公開予定とのこと。
- ChartAssisstant: A Universal Chart Multimodal Language Model via Chart-to-Table Pre-training and Multitask Instruction Tuning [54.9]
ChartAssistantは、ユニバーサルチャートの理解と推論のためのビジョン言語モデルである。 タスク固有の微調整なしで、様々なチャートタスク間の競争性能を達成する。 その結果、OpenAIのGPT-4V(ision)を実世界のチャートデータで上回り、最先端のUniChart法よりも大きな性能向上を示した。
論文 参考訳(メタデータ) (Thu, 4 Jan 2024 17:51:48 GMT)
- こちらはチャートを扱える(Vision-Languageでチャートに特化した)マルチモーダルなLLM。特化しているからかGPT-4VやBardを大きく上回る性能。
- リポジトリはhttps://github.com/OpenGVLab/ChartAstとのことだが現時点では404。データセットを作っているのも大きな貢献だと思うので公開されるのが楽しみ。
- DocLLM: A layout-aware generative language model for multimodal document understanding [12.1]
本稿では,従来の大規模言語モデル(LLM)の軽量拡張であるDocLLMについて述べる。 本モデルは,空間配置構造を組み込むための境界ボックス情報にのみ焦点をあてる。 我々のソリューションは、すべてのタスクにまたがる16のデータセットのうち14のデータセットでSotA LLMよりも優れており、これまで見つからなかった5つのデータセットのうち4のデータセットで十分に一般化されていることを実証しています。
論文 参考訳(メタデータ) (Sun, 31 Dec 2023 22:37:52 GMT)
- bounding boxの情報を組み込んだLLM、画像への拡張よりも効率的とのこと。実装上有用なアプローチに思える。著者がJPMorgan AI Researchというのも興味深い。
- 「DocLLM is a multi-modal system that integrates lightweight visual information by utilizing the spatial positions and dimensions of text tokens obtained using OCR.」ということでbounding boxはOCRから得るのが前提ではあるが、テキストやブロック構造が得られる電子ファイルが使える場合はさらによく動きそう(非現実的な仮定でもない)。
- LLM Augmented LLMs: Expanding Capabilities through Composition [56.4]
CALM — 言語モデルの拡張のための構成 — は、モデル間の相互アテンションを導入して、表現を構成し、新しい機能を有効にする。 低リソース言語で訓練されたより小さなモデルでPaLM2-Sを増強すると、英語への翻訳のようなタスクで最大13%の改善が達成される。 PaLM2-Sがコード固有モデルで拡張されると、コード生成や説明タスクのベースモデルよりも40%向上する。
論文 参考訳(メタデータ) (Thu, 4 Jan 2024 18:53:01 GMT)
- 2つのモデルを融合的に使ってタスクを解く手法の提案。小規模特化型のPLM+LLMで特化した領域の性能が向上する使い方を想定しているよう。「That is, CALM is especially useful in scenarios where proprietary data and knowledge is stored in parametric models. 」ということで非常に有用そう。
- 実験はPaLM-XXSの特化版+PaLM2-Sで行われているが、今はスマホ用っぽいGemini Nanoのfine tune版(だったり個人スマホで個人向けに特化した版)+Gemini Ultraみたいな構成も想定しているんだろうか。
- Shai: A large language model for asset management [8.7]
「シャイ」は資産管理産業向けに特別に設計された10Bレベルの大規模言語モデルである。 Shaiはドメインに関連するタスクのパフォーマンスを向上し、ベースラインモデルを上回っている。
論文 参考訳(メタデータ) (Thu, 21 Dec 2023 05:08:57 GMT)
- 資産管理特化型LLMの提案、14Bと小型ながら金融ドメインであればGPT-3.5以上、一部タスクではGPT-4を超えている。ドメイン特化型LLMの可能性を感じる内容。安全性についても評価されているのが興味深い(そして、Shaiのスコアは高い)。
- また、「solely focusing on domain-specific training could result in catastrophic forgetting」「To mitigate this, we included a blend of generic content in our training data.」など参考になる。
- How Far Are We from Believable AI Agents? A Framework for Evaluating the Believability of Human Behavior Simulation [49.2]
我々は,AIエージェントの信頼性を評価するための2つの指標,一貫性と堅牢性,およびベンチマークであるSimulateBenchを紹介する。 エージェント (i) が長文入力を提示した場合の文字情報の正確な描写に苦慮していること, (ii) プロファイルの摂動に対する脆弱性を示すこと, (iii) 全体としての信頼性に影響を及ぼす重要な要因に大きく影響していること,などが判明した。
論文 参考訳(メタデータ) (Thu, 28 Dec 2023 16:51:11 GMT)
- AIエージェントの一貫性(Consistency )と頑健性(Robustness )を計測するベンチマークの提案。一貫性、がん形成の定義は「Consistency measures whether the LLMs’ generated human behavior accurately depicts the identity information; Robustness measures whether the generated human behavior will be influenced by the perturbation in the profile.」とのこと
- リポジトリはhttps://github.com/GAIR-NLP/GPTMan
- Rethinking Tabular Data Understanding with Large Language Models [39.4]
本研究では,大規模言語モデル(LLM)のテーブル構造摂動に対する堅牢性について検討する。 我々は,同じ内容を示す表の構造的差異が,特に記号的推論タスクにおいて顕著な性能低下を示すことを示した。 テキストおよび記号的推論経路の集約は, 混合自己整合機構によって促進され, SOTA性能が73.6%向上し, WIKITABLEQUESTIONSの精度が向上した。
論文 参考訳(メタデータ) (Wed, 27 Dec 2023 19:58:52 GMT)
- 簡単そうで意外と難しいLLMでテーブルデータを扱うときのテクニックに関する報告。正規化過程では「‘row tables’ with headers in the first column」に変換するとのこと。こちらの形式のほうが処理しやすいのは納得感がある。加えてAppendicesがとても良い。