コンテンツへスキップ
- CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation [36.5]
我々は、開発者が指定した識別子から伝達されるコードセマンティクスをよりよく活用する、事前訓練されたエンコーダ-デコーダ変換モデルであるCodeT5を提案する。 我々のモデルは、コード理解と生成タスクの両方をシームレスにサポートし、マルチタスク学習を可能にする統一的なフレームワークを採用している。
論文 参考訳(メタデータ) (Thu, 2 Sep 2021 12:21:06 GMT)
- Smart Bird: Learnable Sparse Attention for Efficient and Effective Transformer [51.8]
学習可能なスパースアテンションを持つ効率的かつ効果的なトランスフォーマーであるSmart Birdを提案する。 Smart Birdでは、まず1ヘッドの低次元変換器でスケッチされた注目行列を計算します。 次に、スケッチされた注目行列から得られた確率スコアに基づいてトークンペアをサンプリングし、異なる注目ヘッドに対して異なるスパース注意指標行列を生成する。
論文 参考訳(メタデータ) 参考訳(全文) (Fri, 20 Aug 2021 14:22:00 GMT)- 先ほどのFastformerと同じ著者によるTransformerの効率化を扱った論文。こちらは低次元、1-headなTransformerを前段に入れself attention matrixから重要なトークンを抽出、multi-headなTrasnformerにつなぐ構成。
- こちらの計算量はO(N^2 × d + N × K × D)とのことだが、次元dが通常のTrasnformerに比べて非常に小さいので効率的とのこと。要約性能はFastfomerに比べて優れているように見える。
- Fastformer: Additive Attention is All You Need [51.8]
本稿では,加法的注意に基づく効率的なトランスフォーマーモデルであるFastformerを提案する。 Fastformerでは、トークン間のペアワイズインタラクションをモデル化する代わりに、まずグローバルコンテキストをモデル化するために追加アテンションメカニズムを使用します。 このように、Fastformerは線形複雑性を伴う効果的なコンテキストモデリングを実現することができる。
論文 参考訳(メタデータ) 参考訳(全文) (Fri, 20 Aug 2021 09:44:44 GMT)- Transformerの計算量 O(N^2 ×d)から O(N ×d)に抑えた構造、Fastformerを提案、長めのテキスト分類や要約タスクの長文対応で通常のTransformerやその効率化を狙った実装より性能が優れているよう。現時点でUniUM-FastformerがMIND Leaderboardでトップの性能。
- query vectorとkey vectorの取り扱いを工夫しているがこの構造でも情報がうまく残るのが興味深い。
- Mobile-Former: Bridging MobileNet and Transformer [42.6]
我々はMobileNetとTransformerの並列設計であるMobile-Formerについて述べる。 Mobile-Formerは計算効率が良いだけでなく、より表現力があり、低FLOPでMobileNetV3を上回っている。
論文 参考訳(メタデータ) (Thu, 12 Aug 2021 17:59:55 GMT)- 局所的な表現ではMobileNet、大域的な部分はTransformerと2つのモデルを併用することで効率的・高速だが性能の高いモデルを構築できたとの報告。
- RELATED WORKにもある通りこのような構成は最近よく見かける。
- AMMUS : A Survey of Transformer-based Pretrained Models in Natural Language Processing [0.0]
トランスフォーマーベースの事前訓練言語モデル(T-PTLM)は、ほぼすべてのNLPタスクで大きな成功を収めている。 変換されたPTLMは、自己教師付き学習を用いて大量のテキストデータから普遍的な言語表現を学習する。 これらのモデルは、下流モデルのスクラッチからのトレーニングを避けるために、下流タスクに適切なバックグラウンド知識を提供する。
論文 参考訳(メタデータ) (Thu, 12 Aug 2021 05:32:18 GMT)- 最近よく見るTransformerを用いた大規模事前学習モデルのサーベイ。42ページ、引用数304でこの分野を広範に調査、整理している。
- Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [36.5]
我々は,フィードフォワードネットワークを用いたストロークセットのパラメータを予測するために,Paint Transformerと呼ばれる新しいトランスフォーマーベースのフレームワークを提案する。 このようにして、我々のモデルは並列に一組のストロークを生成でき、ほぼリアルタイムでサイズ512 * 512の最終的な絵を得ることができる。 実験により,本手法はトレーニングコストと推論コストの低減により,従来の手法よりも優れた塗装性能が得られることが示された。
論文 参考訳(メタデータ) (Mon, 9 Aug 2021 04:18:58 GMT)- ニューラル・ペインティング(Neural painting)では、ある画像に対して一連のストロークを生成し絵画として再現する。強化学習を用いるアプローチではなく、予測問題として問題を定式化してTransformerベースのアーキテクチャで解いたとの報告。リポジトリにあるAnimated Outputが分かりやすい。
- self-training pipelineをうまく組んだ構成となっており、問題に対するアプローチを検討するうえで参考になる。
- リポジトリはhttps://github.com/Huage001/PaintTransformer
- StrucTexT: Structured Text Understanding with Multi-Modal Transformers [29.5]
Visually Rich Documents (VRD)における構造化テキスト理解は、ドキュメントインテリジェンスの重要な部分である。 本稿では,SrucTexTという統合フレームワークを提案する。 セグメントレベルおよびトークンレベルで構造化されたテキスト理解の手法を評価し,その手法が最先端のテキスト理解よりも優れていることを示す。
論文 参考訳(メタデータ) (Fri, 6 Aug 2021 02:57:07 GMT)
- Perceiver IO: A General Architecture for Structured Inputs & Outputs [84.6]
Perceiver IOは、任意のサイズとセマンティクスの出力を生成するために、モデルの潜在空間を柔軟にクエリすることを学ぶ。 このモデルは、高度に構造化された出力空間を持つタスクに対して強い結果を得る。 Perceiver IOは、GLUE言語ベンチマークでTransformerベースのBERTベースラインにマッチする。
論文 参考訳(メタデータ) (Mon, 2 Aug 2021 17:18:43 GMT)- 入力サイズと出力サイズの両方で線形にスケーリングしながら,汎用的な入出力を処理できるアーキテクチャであるPerceiver IOを提案。様々なタスク(自然言語処理、Optical Flow、Multimodal autoencoding、強化学習(StarCraft /AlphaStar))で優れた性能を達成したとのこと。
- Perceiverの提案はPerceiver: General Perception with Iterative Attention、Transformerを基盤とした構成だが大きな入力・より深いネットワークを構成可能とのことで今後流行るかもしれない。
- Image Fusion Transformer [75.7]
画像融合では、異なるセンサから得られた画像を融合して、情報強化された単一の画像を生成する。 近年,画像融合のための有意義な特徴を符号化するために,最先端の手法で畳み込みニューラルネットワーク(CNN)が採用されている。 我々は,画像融合トランスフォーマー (IFT) を提案する。
論文 参考訳(メタデータ) (Mon, 19 Jul 2021 16:42:49 GMT)- 複数の異なるデータソースからの画像を融合(イメージフュージョン)し情報量の多い一枚の画像にするタスクにおいて、Transformerを使い優れた性能が出せたとの報告。最近よく話題になる局所的な情報と長距離で関係する情報を組み合わせられる構造となっている。
- Per-Pixel Classification is Not All You Need for Semantic Segmentation [184.3]
マスク分類はセマンティックレベルのセグメンテーションタスクとインスタンスレベルのセグメンテーションタスクの両方を解くのに十分一般的である。 マスクの集合を予測する単純なマスク分類モデルであるMaskFormerを提案する。 提案手法は,現在の最先端セマンティック(ADE20Kでは55.6 mIoU)とパノプティックセグメンテーション(COCOでは52.7 PQ)モデルの両方に優れる。
論文 参考訳(メタデータ) (Tue, 13 Jul 2021 17:59:50 GMT)- セグメンテーションではピクセルを分類しグルーピングしていくアプローチと物体検出後にマスク領域を予測していくアプローチの2つがある。近年はピクセルベースのアプローチが良く用いられていたが、後者のアプローチを用いセマンティックセグメンテーション、パノプティックセグメンテーションで優れた性能を達成したとのこと。
- https://bowenc0221.github.io/maskformer/からコード等を確認可能。