- SPARTAN: A Sparse Transformer Learning Local Causation [63.3]
因果構造は、環境の変化に柔軟に適応する世界モデルにおいて中心的な役割を果たす。 本研究では,SPARse TrANsformer World Model(SPARTAN)を提案する。 オブジェクト指向トークン間の注意パターンに空間規則を適用することで、SPARTANは、将来のオブジェクト状態を正確に予測するスパース局所因果モデルを特定する。
論文 参考訳(メタデータ) (Mon, 11 Nov 2024 11:42:48 GMT) - 「Conceptually, we argue that in order to perform efficient adaptation, world models should be structured to reflect the underlying sparse causal structure of the observed dynamics, and that these structures should be local.」のもと、「we propose SPARTAN, a structured world model that jointly performs dynamics model learning and causal discovery.」とのこと。
- Language Models as Causal Effect Generators [44.8]
制御可能な因果構造を持つ大規模言語モデル(LLM)に基づくデータ生成のためのフレームワークを提案する。 我々は、任意の言語モデルと有向非巡回グラフ(DAG)をシーケンス駆動構造因果モデル(SD-SCM)に変換する手順を定義する。
論文 参考訳(メタデータ) (Tue, 12 Nov 2024 18:50:35 GMT) - こちらはLLM+DAGでsequence-driven structural causal modelを作るアプローチ
因果グラフ+LLMという話はとても興味深い。