MIRACLE(Missing data Imputation Refinement And Causal LEarning): 因果関係の推論を含む欠損補間

  • MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.9]
    欠落データに対する因果認識型計算アルゴリズム(MIRACLE)を提案する。 MIRACLEは、欠落発生機構を同時にモデル化することにより、ベースラインの計算を反復的に洗練する。 我々は、MIRACLEが一貫してイミューテーションを改善することができることを示すために、合成および様々な公開データセットに関する広範な実験を行う。
    論文  参考訳(メタデータ)  参考訳(全文)  (Thu, 4 Nov 2021 22:38:18 GMT)
    • 因果構造を利用して欠損補間を改善するフレームワークを提案。合成データ、実データともに改善を性能確認とのこと。
      • 欠損対応は状況によって悩ましい問題になることがあり、大きな改善をしているように見えるので再現実験をしてみたいなと思う。
    • リポジトリはhttps://github.com/vanderschaarlab/MIRACLE

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です