Neural Fields in Robotics: A Survey 

  • Neural Fields in Robotics: A Survey [39.9]
    Neural Fieldsは、コンピュータビジョンとロボット工学における3Dシーン表現の変革的アプローチとして登場した。 この調査は、ロボット工学における彼らの応用を探求し、知覚、計画、制御を強化する可能性を強調している。 それらのコンパクトさ、メモリ効率、微分可能性、基礎モデルと生成モデルとのシームレスな統合は、リアルタイムアプリケーションに理想的です。
    論文  参考訳(メタデータ)   (Sat, 26 Oct 2024 16:26:41 GMT)
  • 「This paper provides a thorough review of Neural Fields in robotics, categorizing applications across various domains and evaluating their strengths and limitations, based on over 200 papers.」というサーベイ、ロボット分野で研究・応用が広がっているとのこと。
  • リポジトリはNeural Fields in Robotics: A Survey

NeRF in Robotics: A Survey

  • NeRF in Robotics: A Survey [95.1]
    近年の神経暗黙表現の出現は、コンピュータビジョンとロボティクス分野に急進的な革新をもたらした。 NeRFは、単純化された数学的モデル、コンパクトな環境記憶、連続的なシーン表現などの大きな表現上の利点から、この傾向を引き起こしている。
    論文  参考訳(メタデータ)   (Thu, 02 May 2024 14:38:18 GMT)
  •  Neural Radiance Fields のロボット分野への応用に関するサーベイ
  • 「NeRF offers a reliable choice for many sub-tasks in robotics, such as scene understanding, reconstruction, dynamic perception, scene editing, object modelling, navigation, and manipulation guidance.」とのこと。

One-2-3-45 & DreamEditor

  • One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization [31.0]
    単一画像の3D再構成は、我々の自然界に関する広範な知識を必要とする重要な課題であるが、難しい課題である。 本研究では,任意の物体の1つの画像を入力として取り込み,360度3次元テクスチャメッシュを1回のフィードフォワードパスで生成する手法を提案する。
    論文  参考訳(メタデータ)   (Thu, 29 Jun 2023 13:28:16 GMT)
  • 1枚の画像からの3D再構成、 Text to 3D Meshにもほんの少し言及がある
  • プロジェクトサイトはOne-2-3-45

  • DreamEditor: Text-Driven 3D Scene Editing with Neural Fields [118.1]
    テキストプロンプトを用いてニューラルフィールドを編集できる新しいフレームワークを提案する。 DreamEditorは非常に現実的なテクスチャと幾何学を生成し、量的および質的な評価において、以前の作品を大きく上回っている。
    論文  参考訳(メタデータ)   (Thu, 29 Jun 2023 10:38:04 GMT)
  • こちらはテキストを用いた3Dモデルの編集

BANMo(Building Animatable 3D Neural Models): ビデオからの3Dモデル構築

  • BANMo: Building Animatable 3D Neural Models from Many Casual Videos [129.7]
    本稿では,特殊なセンサや事前定義されたテンプレート形状を必要としないBANMoを提案する。 Banmoは、多くのモノクロカジュアルビデオから高忠実な3Dモデルを、差別化可能なレンダリングフレームワークで構築する。 実際のデータセットと合成データセットでは、BANMoは人間や動物の以前の研究よりも高忠実な3D再構成を示している。
    論文  参考訳(メタデータ)   (Thu, 23 Dec 2021 18:30:31 GMT)

Dream Fields: テキスト表現からの3Dオブジェクト生成

  • Zero-Shot Text-Guided Object Generation with Dream Fields [111.1]
    ニューラルレンダリングとマルチモーダル画像とテキスト表現を組み合わせることで、多様な3Dオブジェクトを合成する。 提案手法であるドリームフィールドは,3次元の監督なしに広範囲の物体の形状と色を生成できる。 実験では、ドリーム・フィールズ(Dream Fields)は、様々な自然言語のキャプションから、現実的で多視点で一貫したオブジェクトの幾何学と色を作り出す。
    論文  参考訳(メタデータ)  参考訳(全文)  (Thu, 2 Dec 2021 17:53:55 GMT)
    • テキストから3次元オブジェクト生成するモデルの提案。論文の通りNeRF(Neural Radiance Fields) とCLIPをつかってできそうな気はするものの、プロジェクトサイトにある結果を見ると非常に面白い。
    • プロジェクトサイトはZero-Shot Text-Guided Object Generation with Dream Fields (ajayj.com)