コンテンツへスキップ
- Regularization is all you Need: Simple Neural Nets can Excel on Tabular Data [36.1]
タブラルデータセットは、ディープラーニングのための最後の”未完成の城”である。 Gradient Boosted Decision Treesのような従来のMLメソッドは、最近の特殊なニューラルネットワークに対してさえ、強く機能している。 13の正則化手法の最適組み合わせ/カクテルを探索し,平面多層パーセプトロン(MLP)ネットワークの正則化を提案する。
論文 参考訳(メタデータ) (Mon, 21 Jun 2021 15:27:43 GMT)- (i)高度に正則化されたプレーンなMLPが最近の最先端の専門的ニューラルネットワークアーキテクチャを著しく上回り,(ii)XGBoostのような強力なML手法よりも優れているとの報告。
- (balanced accuracyだからか?)表の中に出てくるスコアに低すぎるっぽいものもあり要精査な印象。
- SODA10M: Towards Large-Scale Object Detection Benchmark for Autonomous Driving [94.1]
我々は,SODA10Mという名の自律走行用大規模物体検出ベンチマークをリリースし,1000万枚の未ラベル画像と6つの代表対象カテゴリをラベル付けした20K画像を含む。 多様性を向上させるために、画像は32の異なる都市で、1フレームあたり10秒毎に異なる気象条件、期間、場所のシーンで収集される。 我々は、既存の教師付き最先端検出モデル、一般的な自己監督型および半教師付きアプローチ、および将来のモデルの開発方法に関するいくつかの知見について、広範な実験と詳細な分析を行った。
論文 参考訳(メタデータ) (Mon, 21 Jun 2021 13:55:57 GMT)- 1000万枚の未ラベル画像と6つのカテゴリをラベル付けした20Kの画像からなるデータセット。多くの都市、気象条件、時間帯などが含まれていて自動運転をターゲットにしている。