LERG( local explanation of response generation): 対話応答の説明

  • Local Explanation of Dialogue Response Generation [77.7]
    反応生成の局所的説明(LERG)は、生成モデルの推論過程に関する洞察を得るために提案される。 LERGは、シーケンス予測を人間の応答の不確実性推定とみなし、入力を摂動させ、人間の応答に対する確実性の変化を計算することによって説明を作成する。 提案手法は, 提案手法を改良し, 提案手法の4.4~12.8%を改良した。
    論文  参考訳(メタデータ)   (Fri, 11 Jun 2021 17:58:36 GMT)
    • テキスト生成における説明に関する報告。分類モデルに対する説明が流行っている割に生成タスクに対する説明の研究が少ないというのはその通りという印象。

因果性を用いた敵対的攻撃対策

  • Adversarial Robustness through the Lens of Causality [105.5]
    ディープニューラルネットワークの敵対的脆弱性は、機械学習において大きな注目を集めている。 我々は、因果関係を敵対的脆弱性の軽減に組み込むことを提案する。 我々の手法は、敵の脆弱性を緩和するために因果性を利用する最初の試みと見なすことができる。
    論文  参考訳(メタデータ)   (Fri, 11 Jun 2021 06:55:02 GMT)
    • 因果グラフを敵対的攻撃の防御に用いるという報告。敵対的攻撃は自然なデータ分布に対する特定の介入とみなせる、というのはその通りでベンチマーク上も効果があるのが興味深い。