AIモデルのFairness検証の実例

AI系手法(といっても一つはロジスティック回帰だが)の実例をFairnessの観点から分析した報告が出ていた。この手の話題はFairnessとは何か?の議論が重要で、実例をしっかりと扱った論文はとても勉強になる。

  • Fair Decision-Making for Food Inspections [3.4]
    本稿では,シカゴ市公衆衛生局によるレストラン検査の予測モデルの適用について再検討する。 本モデルでは,検査を行った正統性に基づいて,検査を不平等に扱うことが確認された。 我々は、オリジナルのモデルをより公平な方法で使用するためのアプローチと、公平性を達成するためのモデルのトレーニング方法の両方について検討する。
    論文  参考訳(メタデータ)   (Thu, 12 Aug 2021 04:17:39 GMT)
  • Fairness in Algorithmic Profiling: A German Case Study [0.0]
    本研究では、求職者の長期失業リスクを予測するための統計モデルを比較し、評価する。 これらのモデルは、競争力のある精度で長期失業を予測するために使用できることを示す。 異なる分類ポリシーは、非常に異なる公平性をもたらすことを強調する。
    論文  参考訳(メタデータ)   (Wed, 4 Aug 2021 13:43:42 GMT)

NLPにおける説明手法のサーベイ

  • Post-hoc Interpretability for Neural NLP: A Survey [11.8]
    本稿では,解釈可能性法がどのように説明を伝達するかを分類する。 この調査は、モデル学習後に説明を提供するポストホック手法に焦点を当てている。 このクラスのメソッドに共通する関心事は、モデルが正確に反映されているかどうかである。
    論文  参考訳(メタデータ)   (Tue, 10 Aug 2021 18:00:14 GMT)
    • 自然言語処理を対象にした説明性、解釈性を実現する手法のサーベイ。モチベーション、評価方法、手法の概要説明と非常に多くの手法を紹介している。この分野を振り返るうえで貴重な資料。