A Review on Methods and Applications in Multimodal Deep Learning [8.2] マルチモーダル深層学習は、様々な感覚が情報処理に携わっているときに、よりよく理解し、分析するのに役立つ。 本稿では,画像,ビデオ,テキスト,音声,身体ジェスチャー,表情,生理的信号など,多種類のモダリティに焦点を当てる。 様々なマルチモーダル深層学習手法のきめ細かい分類法を提案し,様々な応用をより深く研究した。 論文参考訳(メタデータ)参考訳(全文) (Fri, 18 Feb 2022 13:50:44 GMT)
近年非常に流行しているMMDL (MultiModal Deep Learning)のサーベイ。多様なモダリティをサーベイ対象にしており力作。概要を知るにはとても良い資料な気がする。
Survey on Large Scale Neural Network Training [48.4] 現代のディープニューラルネットワーク(DNN)は、トレーニング中にウェイト、アクティベーション、その他の中間テンソルを保存するためにかなりのメモリを必要とする。 この調査は、より効率的なDNNトレーニングを可能にするアプローチの体系的な概要を提供する。 論文参考訳(メタデータ) (Mon, 21 Feb 2022 18:48:02 GMT)
ArgSciChat: A Dataset for Argumentative Dialogues on Scientific Papers [61.8] 学術論文のドメインエキスパートとして科学者間の対話を収集する新しい枠組みを導入する。 我々のフレームワークは、科学者が論文を対話の根拠として提示し、論文のタイトルを気に入った対話に参加することを可能にする。新しい議論的対話データセットArgSciChatの収集にフレームワークを使用します。 41の対話から収集された498のメッセージと20の科学論文からなる。 論文参考訳(メタデータ) (Mon, 14 Feb 2022 13:27:19 GMT)
A Contrastive Framework for Neural Text Generation [46.8] テキスト生成は多くの自然言語処理アプリケーションにおいて非常に重要である。 しかし、ニューラルネットワークモデルの最大化に基づく復号法(ビーム探索など)は、しばしば不自然であり、望ましくない繰り返しを含んでいる。モデル表現空間を校正するための対照的な学習目標であるSimCTGと,生成したテキストのコヒーレンスを維持しつつ多様性を高めるためのデコード手法であるコントラスト検索を提案する。 論文参考訳(メタデータ)参考訳(全文) (Sun, 13 Feb 2022 21:46:14 GMT)
Scaling Laws Under the Microscope: Predicting Transformer Performance from Small Scale Experiments [42.8] 本稿では,スケーリング法則がモデル開発の促進に有効かどうかを考察する。 スケーリング法則は、いくつかのNLPタスクにおいて微調整時に現れる。 スケーリング法則が存在するタスクに対しては、より大きなモデルのパフォーマンスを予測するために使用することができる。 論文参考訳(メタデータ) (Sun, 13 Feb 2022 19:13:00 GMT)
Towards Identifying Social Bias in Dialog Systems: Frame, Datasets, and Benchmarks [95.3] 本稿では,ダイアログの安全性問題に対する社会的バイアス検出に焦点をあてる。 まず,会話における社会的バイアスを現実的に分析する新しいダイアルバイアスフレームを提案する。 中国初の社会バイアスダイアログデータセットであるCDail-Biasデータセットを紹介する。 論文参考訳(メタデータ) (Wed, 16 Feb 2022 11:59:29 GMT)