- Scaling Laws Under the Microscope: Predicting Transformer Performance from Small Scale Experiments [42.8]
本稿では,スケーリング法則がモデル開発の促進に有効かどうかを考察する。 スケーリング法則は、いくつかのNLPタスクにおいて微調整時に現れる。 スケーリング法則が存在するタスクに対しては、より大きなモデルのパフォーマンスを予測するために使用することができる。
論文 参考訳(メタデータ) (Sun, 13 Feb 2022 19:13:00 GMT)- SST-2、QNLI、MRPC、RACE、SQuAD 1.1、SQuAD 2.0、BoolQ、CoLA 、MNLIに対してパラメータ数と性能の関係を調査、Scaling Lawsは大規模化した際のパフォーマンス予測に有用では?との結論
- ネットワークアーキテクチャやデータにもよるんじゃないかとも思いつつ、実験結果は興味深い
- SST-2、QNLI、MRPC、RACE、SQuAD 1.1、SQuAD 2.0、BoolQ、CoLA 、MNLIに対してパラメータ数と性能の関係を調査、Scaling Lawsは大規模化した際のパフォーマンス予測に有用では?との結論