LUV(Labels from UltraViolet): 紫外線を用いたラベリング

  • All You Need is LUV: Unsupervised Collection of Labeled Images using Invisible UV Fluorescent Indicators [36.5]
    Labels from UltraViolet (LUV)は、人間のラベル付けなしで実際の操作環境で高速にラベル付けされたデータ収集を可能にする新しいフレームワークである。 LUVは透明な紫外線塗料とプログラマブルな紫外線LEDを使って、標準的な照明でシーンのペア画像を集めている。 LUVは、未塗布試験画像上の人間のアノテーションと整合したラベルを提供する。
    論文  参考訳(メタデータ)   (Wed, 9 Mar 2022 08:03:07 GMT)
    • 通常のアノテーションは「可視光で撮影した画像」を見ながら人がラベリングやセグメンテーションを実施する。そのプロセスは大変なので、認識対象に紫外線蛍光塗料を塗り「②紫外線LEDを使って撮影した画像」を使えばアノテーション相当の結果が得られるという報告。All You Needかは疑問だがデータを作りに行ける場合は有効な方法だと思う。
      • シミュレーション環境でデータを作る手法もよくつかわれるがリアルな環境でうまくやるアイデアはなるほどと思う。
    • プロジェクトサイトはAll You Need is LUV (google.com)

DUAL(Discrete Unit Adaptive Learning): TextlessなSQA(Spoken Question Answering)

  • DUAL: Textless Spoken Question Answering with Speech Discrete Unit Adaptive Learning [66.7]
    SQA (Spoken Question Answering) は近年注目され, 目覚ましい進歩を遂げている。 既存のSQA手法は、収集に時間と費用がかかる自動音声認識(ASR)の転写に依存している。 本研究は,未ラベルのデータを事前学習に活用し,SQAダウンストリームタスクによって微調整される離散単位適応学習(DUAL)という,ASR transcript-free SQAフレームワークを提案する。
    論文  参考訳(メタデータ)   (Wed, 9 Mar 2022 17:46:22 GMT)
    • Textlessな(音声認識を使わない)SQAフレームワークの提案。データセットとしてNatural Multi-Speaker Spoken Question Answering (NMSQA)も合わせて公開している。
    • ASRを併用するアプローチと競合的な結果で(当たり前ではあるが)ASR品質によっては提案手法が優れていることがあるとのこと。
    • リポジトリはGitHub – DanielLin94144/DUAL-textless-SQA: The official implementation of DUAL textless SQA

機械学習を用いたシステムのcode smell

  • Code Smells in Machine Learning Systems [27.8]
    本研究は,ディープラーニングソフトウェアシステムにおけるコードの臭いに関する最初の研究である。 DLシステムにおいて,保守関連変更の9つの頻度で検出された。 新たに同定されたコードの臭いが、開発者の視点でDLシステムのメンテナンスに広く影響していることがわかりました。
    論文  参考訳(メタデータ)  参考訳(全文)  (Wed, 2 Mar 2022 00:39:00 GMT)
    • 機械学習、特にDeep Learningを用いたソフトウェアに対するcode smell(ヤバそうなコード)の分析。
      • 「Scattered Use of ML Library: サードパーティーのライブラリやフレームワークを非凝縮的に使用、当該ライブラリが更新されたときに変更が多発」など身につまされる内容・・・