コンテンツへスキップ
- OCR Improves Machine Translation for Low-Resource Languages [10.0]
我々は,騒音に富んだ実データと合成データからなる新しいベンチマークであるOCR4MTを導入し,公開する。 我々は、我々のベンチマークで最先端のOCRシステムを評価し、最も一般的なエラーを分析した。 次に,OCRエラーが機械翻訳性能に与える影響について検討する。
論文 参考訳(メタデータ) (Sun, 27 Feb 2022 02:36:45 GMT)- OCRによって得られたモノリンガルデータは(リソースが少ない言語の)械翻訳モデルの性能向上に有効という論文。OCRエラーのタイプ別にも分析がされており、「replacement OCR error」が機械翻訳モデルに最もダメージを与えるとのこと。
- 現時点ではデータ等はアップされていない。
- MSCTD: A Multimodal Sentiment Chat Translation Dataset [66.8]
マルチモーダルチャット翻訳(MCT)という新しいタスクを導入する。 MCTは、関連する対話履歴と視覚的コンテキストの助けを借りて、より正確な翻訳を生成することを目的としている。 本研究は,マルチモーダルチャット翻訳とマルチモーダル対話感情分析の両方の研究を容易にする。
論文 参考訳(メタデータ) (Mon, 28 Feb 2022 09:40:46 GMT)- マルチモーダル(画像+テキスト)な機械翻訳データセットと対話勘定分析データセット。17.8K対話、173K発話・画像と大規模。ベースラインモデルも提供されており、画像を併用した方が性能が向上している。
- リポジトリはGitHub – XL2248/MSCTD、現時点ではデータ等はアップされていない。。。
- A Review of Affective Generation Models [8.0]
アフェクティブ・コンピューティング(Affective Computing)は、人間の感情状態を分析し、認識し、影響を及ぼす計算システムを開発する分野である。 一般に、感情認識と感情生成の2つのサブプロブレムに分けられる。感情認識は過去10年間に何回もレビューされてきた。 しかし、感情生成は批判的なレビューを欠いている。 この研究は、将来の感情発生の研究に役立つと考えられている。
論文 参考訳(メタデータ) 参考訳(全文) (Tue, 22 Feb 2022 09:32:11 GMT)- 感情生成に関するサーベイ。感情を伴うテキスト、音声、表情、動きの生成について扱っている。
- 分かったような分からないような・・・という感想だが、様々なトライがあり興味深い。