コンテンツへスキップ
- Discord Questions: A Computational Approach To Diversity Analysis in News Coverage [84.6]
本稿では,情報源の違いを識別し,ニュース報道の多様性を理解する上で,読者を支援する新しい枠組みを提案する。 このフレームワークはDiscord Questionsの生成に基づいている。
論文 参考訳(メタデータ) (Wed, 9 Nov 2022 16:37:55 GMT)
- ソースの違いを明確にする枠組みの提案。質問の生成→QAモデルによる回答収集→回答の統合というパイプラインを用いている。(記者の視点等が入るため)ニュースソースごとに質問応答(抽出されるデータ)は異なるはずで直感的にも効果的なアプローチのように思う。
- リポジトリはsalesforce/discord_questions (github.com)
- GREENER: Graph Neural Networks for News Media Profiling [24.7]
本稿では,ウェブ上でのニュースメディアのプロファイリングの問題について,その実態と偏見について考察する。 私たちの主な焦点は、オーディエンスの重複に基づいて、メディア間の類似性をモデル化することにあります。 予測精度は2つのタスクに対して2.5-27マクロF1ポイント向上した。
論文 参考訳(メタデータ) (Thu, 10 Nov 2022 12:46:29 GMT)
- グラフに基づくニュースメディアの分析。ramybaly/News-Media-Reliability (github.com)を使って分析しており、Alexa MetricsやTwitter、Facebook、YouTube、Wikipediaなどデータを追加していった時の動きが興味深い