コンテンツへスキップ
- Deep Anomaly Detection under Labeling Budget Constraints [37.0]
予算制約の下で最適なデータカバレッジを持つデータラベリング戦略を提案する。 また,半教師付き異常検出のための新しい学習フレームワークを提案する。
論文 参考訳(メタデータ) (Wed, 15 Feb 2023 18:18:35 GMT)
- 予算制約がある中での異常検知手法としてSOEL(Semi-supervised outlier exposure with limited labeling budget)を提案
- More than you’ve asked for: A Comprehensive Analysis of Novel Prompt Injection Threats to Application-Integrated Large Language Models [64.7]
検索とAPI呼び出し機能を備えた大規模言語モデルの拡張は、全く新しい攻撃ベクトルを誘導することを示す。 これらのLSMは、敵によって事前に注入され選択された悪意のあるプロンプトを含むWebから検索された有毒なコンテンツを処理する。
論文 参考訳(メタデータ) (Thu, 23 Feb 2023 17:14:38 GMT)
- プロンプトインジェクションに関する論文、指摘されている通りApplication-Integrated LLMでは大きな脅威になりうる(そして対策も難しい)。この論文では信頼できない外部ソースを取りに行かせるタイプの攻撃をIndirect Prompt Injectionと呼んでおり、Bingの新機能のようにデータを取得しに行くタイプのLLMでは問題になりそう(もちろん、将来ToolformerのようにAPIを呼びに行くようなAIではさらに問題が大きい)
- 下記のようにうまくプロンプトを作ろうとする方向性もあれば、攻撃できないかという方向性もあり、研究は様々だと思う。(解析的に明らかにしにくい分野でもあり多方面からの研究は非常に重要だとも思う)