- ExaRanker: Explanation-Augmented Neural Ranker [67.5]
本研究は,ニューラルランカーが説明の恩恵を受けることを示す。 我々は、GPT-3.5のようなLCMを用いて、説明付き検索データセットを増強する。 ExaRankerと呼ばれる私たちのモデルは、数千の例で微調整され、合成説明は、説明なしで3倍の例で微調整されたモデルと同等に実行される。
論文 参考訳(メタデータ) (Wed, 25 Jan 2023 11:03:04 GMT) - 大規模言語モデルを用いた説明をNeural Rankerの補強として使うという論文。BM25、monoT5をout perform。
- リポジトリはGitHub – unicamp-dl/ExaRanker
日: 2023年2月7日
Chain-of-Thoughtの改善
マルチモーダル化、プロンプトの合成、新たな構築フレームワークとChain-of-Thoughtに関する改善を対象とした論文が複数出ていた。有用なテクニックとして認知されたのかなと思う&改善が結構な幅で行われているのが凄い。
- Multimodal Chain-of-Thought Reasoning in Language Models [80.9]
大規模言語モデル(LLM)は、チェーン・オブ・ソート(CoT)を利用して複雑な推論において印象的な性能を示した。 本稿では,視覚機能を分離したトレーニングフレームワークに組み込んだマルチモーダルCoTを提案する。 Multimodal-CoTでは、ScienceQAベンチマークで10億のパラメータ未満のモデルで、従来の最先端のLCM(GPT-3.5)を16%(75.17%->91.68%)上回るパフォーマンスを実現しています。
論文 参考訳(メタデータ) (Thu, 2 Feb 2023 07:51:19 GMT)
- Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models [121.5]
大規模言語モデルはチェーン・オブ・ソート・プロンプトを使用して様々な推論タスクを実行でき、ステップ・バイ・ステップのデモを通じて回答を見つけることができる。 そこで本研究では,手作りの例を数種類活用して,モデルにさらに多くの例を生成する手法であるSynthetic promptingを紹介する。 本手法は数値的,記号的,アルゴリズム的推論タスクにおいて評価し,既存のプロンプト手法よりも優れていることを示す。
論文 参考訳(メタデータ) (Wed, 1 Feb 2023 17:33:12 GMT)
- Faithful Chain-of-Thought Reasoning [29.9]
CoT(Chain-of-Thought)は、複雑な推論タスクにおいて、言語モデル(LM)のパフォーマンスを高める。 推論タスクを2段階に分解する忠実な構築フレームワークであるFithful CoTを提案する。 提案手法は,4つの異なる領域の10の推論データセットに対して有効であることを示す。
論文 参考訳(メタデータ) (Tue, 31 Jan 2023 03:04:26 GMT)