- LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention [53.8]
命令追従モデルにLLaMAを効率よく微調整する方法であるLLaMA-Adapterを提案する。 LLaMA-Adapterは52Kの自己命令型デモを使用して、凍結したLLaMA 7Bモデルに1.2Mの学習可能なパラメータを導入している。 効率的なトレーニングにより、LLaMA-Adapterは、完全に微調整された7Bパラメータを持つAlpacaに匹敵する高品質な応答を生成する。
論文 参考訳(メタデータ) (Tue, 28 Mar 2023 17:59:12 GMT) - その名の通りLLaMAへのAdapter、1.2Mパラメータと極めて少ないパラメータのチューニングのみで完全なfine tuningに相当とのこと
- リポジトリはGitHub – ZrrSkywalker/LLaMA-Adapter: Fine-tuning LLaMA to follow instructions within 1 Hour and 1.2M Parameters
LLMの時代に効率のよい調整はどうあるべきかはとても大事、だがweightを変更可能かは悩ましい時代かもとも思う。GitHub – txsun1997/Black-Box-Tuning: ICML’2022: Black-Box Tuning for Language-Model-as-a-Service & EMNLP’2022: BBTv2: Towards a Gradient-Free Future with Large Language Modelsとかにも注目していたり。