コンテンツへスキップ
- Active Learning for Multilingual Semantic Parser [56.1]
多言語意味解析(AL-MSP)のための最初の能動的学習手法を提案する。 AL-MSPは翻訳対象の既存のデータセットからサブセットのみを選択する。 実験の結果,AL-MSPは理想的な選択法で翻訳コストを大幅に削減できることがわかった。
論文 参考訳(メタデータ) (Thu, 13 Apr 2023 13:30:06 GMT)
- マルチリンガルなSemantic Parserを対象としたアクティブラーニング、翻訳コストを減らすことがモチベーションのようだがNLPに対するアクティブラーニングでうまくいく事例として興味深い
- 当然ながら「Clearly, human translation delivers a greater output quality compared to machine translation.」なのでアクティブラーニングがうまく動作すると人間で…という方向が期待される
- Supporting Human-AI Collaboration in Auditing LLMs with LLMs [10.1]
大きな言語モデルは偏見があり、無責任に振る舞うことが示されている。 これらの言語モデルを厳格に監査することは重要である。 既存の監査ツールは、人間とAIの両方を活用して失敗を見つける。
論文 参考訳(メタデータ) (Wed, 19 Apr 2023 21:59:04 GMT)
- LLMの監査ツール、
- リポジトリはGitHub – microsoft/adatest at AdaTest++