- Segment Everything Everywhere All at Once [93.3]
SEEMは、全てを一度にイメージに分割するための、迅速でインタラクティブなモデルである。 本論文では,SEEMについて述べる。SEEMは,任意の場所を一度に分割する,迅速かつインタラクティブなモデルである。
論文 参考訳(メタデータ) (Thu, 13 Apr 2023 17:59:40 GMT) - プロンプトに対応したセグメンテーションモデル、クリックなど言葉以外でのプロンプティングが可能
- リポジトリはGitHub – UX-Decoder/Segment-Everything-Everywhere-All-At-Once: Official implementation of the paper “Segment Everything Everywhere All at Once”
日: 2023年4月18日
ゼロショットなビデオ編集
- Zero-Shot Video Editing Using Off-The-Shelf Image Diffusion Models [78.2]
ビデオ編集の最近の試みは、トレーニングに大量のテキスト・ビデオデータと計算資源を必要とする。 我々は、ゼロショットビデオ編集のためのシンプルで効果的な方法であるvid2vid-zeroを提案する。 実験と分析は、現実世界のビデオの属性、主題、場所などの編集において有望な結果を示す。
論文 参考訳(メタデータ) (Thu, 13 Apr 2023 07:34:11 GMT) - vid2vidというゼロショットでのビデオ編集、画像ではできていたが動画でしかもフレーム間の一貫性をもって編集ができているように見える
- GitHub – baaivision/vid2vid-zero: Zero-Shot Video Editing Using Off-The-Shelf Image Diffusion Modelsがリポジトリ、デモも存在Vid2vid Zero – a Hugging Face Space by BAAI