コンテンツへスキップ
- Large Language Models for Information Retrieval: A Survey [56.4]
情報検索は、項ベースの手法から高度なニューラルモデルとの統合へと進化してきた。 ニューラルネットワークは複雑なコンテキスト信号や意味的ニュアンスを捉えるのに優れていますが、データ不足、解釈可能性、文脈的に妥当で不正確な応答の生成といった課題に直面しています。 近年の研究では、大規模言語モデル(LLM)を活用してIRシステムの改善が試みられている。
論文 参考訳(メタデータ) (Tue, 15 Aug 2023 12:09:20 GMT)
- LLMと情報検索に関するサーベイ、query rewritingだけでも色々なアプローチがあることが分かり興味深い。
- LayoutLLM-T2I: Eliciting Layout Guidance from LLM for Text-to-Image Generation [112.3]
レイアウト計画と画像生成を実現するための粗大なパラダイムを提案する。 提案手法は,レイアウトと画像生成の両面で最先端のモデルより優れている。
論文 参考訳(メタデータ) (Wed, 9 Aug 2023 17:45:04 GMT)
- LLMを通してテキストからレイアウト情報を推測し、画像生成する手法の提案。
- プロジェクトサイトはLayoutLLM-T2I