- Benchmarking Generation and Evaluation Capabilities of Large Language Models for Instruction Controllable Summarization [136.2]
命令制御可能なテキスト要約の大規模言語モデル(LLM)をベンチマークする。 本研究は,LLMにおいて,命令制御可能なテキスト要約が依然として困難な課題であることを示す。
論文 参考訳(メタデータ) (Wed, 15 Nov 2023 18:25:26 GMT) - 制御されたテキスト要約のベンチマーク。GPT-4であれば可能なのかと思うところだが「We found that several LLMs have already shown promising performance in generating ins-controllable summaries.」であるものの「However, they lack robust holistic capabilities for this task since they still make a considerable amount of errors in their summaries and they can not reliability evaluate the different candidate summaries for the same data example」と難しいよう。(もとから簡単なタスクではないではないものの)LLMであれば対応可能と言い切れないのは興味深い結果。
- リポジトリはGitHub – yale-nlp/InstruSum
月: 2023年11月
SEMQA: Semi-Extractive Multi-Source Question Answering
- SEMQA: Semi-Extractive Multi-Source Question Answering [98.8]
本稿では,複数ソースを半抽出的に要約することで,複数の質問に答える新しいQAタスクを提案する。 この種の最初のデータセットであるQuoteSumを作成し、自然および生成された質問に対する人間による半抽出的な回答を提示する。
論文 参考訳(メタデータ) (Wed, 8 Nov 2023 18:46:32 GMT) - SEMQAという新たなタスクの提案、「Specifically, given a question and a set of retrieved passages, the goal is to generate a summarized and well-grounded answer that interleaves verbatim extracted spans of factual statements with free-text connectors.」とのことでHallucinationを避け検証可能なanswerを得る事が目的のよう
- リポジトリはGitHub – google-research-datasets/QuoteSum: QuoteSum is a textual QA dataset containing Semi-Extractive Multi-source Question Answering (SEMQA) examples written by humans, based on Wikipedia passages.
Control3D
- Control3D: Towards Controllable Text-to-3D Generation [107.8]
本稿では,手書きスケッチ,すなわちコントロール3Dについてテキストから3D生成条件を提案する。 2次元条件付き拡散モデル(ControlNet)を再構成し、NeRFとしてパラメータ化された3次元シーンの学習を誘導する。 合成3Dシーン上での描画画像のスケッチを直接推定するために,事前学習可能なフォト・ツー・スケッチ・モデルを利用する。
論文 参考訳(メタデータ) (Thu, 9 Nov 2023 15:50:32 GMT) - 手書きスケッチ+テキストによる3Dモデル生成、ControlNetの3D版な印象(「Specifically, a 2D conditioned diffusion model (ControlNet) is remoduled to optimize a Neural Radiance Field (NeRF), encouraging each view of the 3D scene to align with the given text prompt and hand-drawn sketch.」とのこと)
Holistic Evaluation of Text-To-Image Models
- Holistic Evaluation of Text-To-Image Models [153.5]
我々はテキスト・ツー・イメージ・モデル(HEIM)の全体的評価という新しいベンチマークを導入する。 テキスト・イメージ・アライメント、画像品質、美学、独創性、推論、知識、バイアス、毒性、公正性、堅牢性、多言語性、効率性を含む12の側面を識別する。 以上の結果から,異なるモデルが異なる強みを示すことにより,すべての面において単一のモデルが優れているものはないことが明らかとなった。
論文 参考訳(メタデータ) (Tue, 7 Nov 2023 19:00:56 GMT) - 「text-image alignment, image quality, aesthetics, originality, reasoning, knowledge, bias, toxicity, fairness, robustness, multilinguality, and efficiency」と12の側面での画像生成AIの評価。結果は「Overall, DALL-E 2 appears to be a versatile performer across human metrics.However, no single model emerges as the top performer in all aspects.」とのこと。
- リポジトリはGitHub – stanford-crfm/helm: Holistic Evaluation of Language Models (HELM), a framework to increase the transparency of language models (https://arxiv.org/abs/2211.09110).、Holistic Evaluation of Text-To-Image Models (HEIM) (stanford.edu)
GPT-4V in Wonderland: Large Multimodal Models for Zero-Shot Smartphone GUI Navigation
- GPT-4V in Wonderland: Large Multimodal Models for Zero-Shot Smartphone GUI Navigation [167.6]
MM-Navigator(MM-Navigator)は、スマートフォンのGUIナビゲーションタスク用のGPT-4Vベースのエージェントである。 MM-Navigatorは、スマートフォンの画面と人間として対話し、指示を満たすためのその後の行動を決定することができる。
論文 参考訳(メタデータ) (Mon, 13 Nov 2023 18:53:37 GMT) - スマホのナビゲーションを行うエージェント。GPT-4Vを使ってマルチモーダルに対応。FinetunedなLlama2、PaLM 2と比べても高い性能。
- リポジトリはGitHub – zzxslp/MM-Navigator
Factcheck-GPT
- Factcheck-GPT: End-to-End Fine-Grained Document-Level Fact-Checking and Correction of LLM Output [124.3]
本稿では,大規模言語モデル (LLM) 生成応答の事実性に注釈を付けるための総合的なエンドツーエンドソリューションを提案する。 ラベル付け手順を高速化し、ラッカーの作業を簡単にするためのアノテーションツールを設計し、構築する。 オープンドメインの文書レベルの事実性ベンチマークを3段階のクレーム,文,文書で構築する。
論文 参考訳(メタデータ) (Wed, 15 Nov 2023 14:41:57 GMT) - LLMのためのファクトチェックベンチマーク&アノテーションツールの提案。「This reveals that current mainstreaming SOTA fact-checkers still have large room to improve on verification, particularly on false claims (F1<0.53).」とのこと。
- リポジトリはGitHub – yuxiaw/Factcheck-GPT: Fact-Checking the Output of Generative Large Language Models in both Annotation and Evaluation.
Thread of Thought
- Thread of Thought Unraveling Chaotic Contexts [133.2]
思考のスレッド(ThoT)戦略は、人間の認知プロセスからインスピレーションを得ている。 実験では、他のプロンプト技術と比較して、ThoTは推論性能を著しく改善する。
論文 参考訳(メタデータ) (Wed, 15 Nov 2023 06:54:44 GMT) - プロンプトテクニック“Thread of Thought” (ThoT) strategyの提案。「chaotic context X and query Q」に対して「“[X] Q: [Q] Walk me through this context in manageable parts step by step, summarizing and analyzing as we go. A:”.」としてから回答を得るアプローチ。CoTより優れているとのこと。
On the Road with GPT-4V(ision): Early Explorations of Visual-Language Model on Autonomous Driving
- On the Road with GPT-4V(ision): Early Explorations of Visual-Language Model on Autonomous Driving [26.6]
視覚言語モデル(VLM)の出現は、完全自律運転の実現における新たなフロンティアである。 本報告では,最新のVLM,Modelnamefullの総合評価と自律走行シナリオへの応用について述べる。 本研究により,既存の自律システムと比較して,シーン理解や因果推論において,モデルネームが優れた性能を示すことが明らかとなった。
論文 参考訳(メタデータ) (Thu, 9 Nov 2023 12:58:37 GMT) - GPT-4Vの自動運転への適用可能性の検討。やはり高性能。
- リポジトリはGitHub – PJLab-ADG/GPT4V-AD-Exploration: On the Road with GPT-4V(ision): Early Explorations of Visual-Language Model on Autonomous Driving
強化学習と拡散モデル
- Diffusion Models for Reinforcement Learning: A Survey [26.6]
拡散モデルは、生成モデルの顕著なクラスとして現れている。 最近の研究は、強化学習ソリューションの改善における拡散モデルの利点を示している。
論文 参考訳(メタデータ) (Thu, 2 Nov 2023 13:23:39 GMT) - 強化学習と拡散モデルに関するサーベイ。拡散モデルの役割としては大きく分けて「Diffusion models as the planner」「Diffusion models as the policy」「Diffusion models as the data synthesizer」というアプローチがあるとのこと。
- リポジトリはGitHub – apexrl/Diff4RLSurvey: This repository contains a collection of resources and papers on Diffusion Models for RL, accompanying the paper “Diffusion Models for Reinforcement Learning: A Survey”
TencentLLMEval
- TencentLLMEval: A Hierarchical Evaluation of Real-World Capabilities for Human-Aligned LLMs [35.7]
大規模言語モデル(LLM)は、様々な自然言語タスクにまたがる印象的な機能を示している。 本研究では,LLMの習熟度を評価するために,多種多様な実世界の課題に対する指示に従うための包括的人間評価フレームワークを提案する。
論文 参考訳(メタデータ) (Thu, 9 Nov 2023 13:58:59 GMT) - LLMの評価に関する論文、主として中国語に関するものだがクロスリンガル・マルチリンガルという意味では日本語の評価でも参考になりそう。Figure 2: Hierarchical task tree chartのような整理も興味深い。GPT-4が一つ抜けている感はあるものの、他のモデルも猛追という感じ。
- リポジトリはGitHub – xsysigma/TencentLLMEval: TencentLLMEval is a comprehensive and extensive benchmark for artificial evaluation of large models that includes task trees, standards, data verification methods, and more.