DBRX, Jamba, Grok-1.5, RWKV Finch

先週もLLM界隈の話題が多かった。注目はDatabricks(&元MosaicML)によるDBRXで公開モデルとしては非常に高性能(ライセンスは独自)。「DBRX」を発表: オープンソース大規模言語モデルのスタンダードとして | Databricks Blog

JambaはMamba MoE + transformerでSSMハイブリッドとして商用レベルをうたうモデル。ベースモデルはApache-2ライセンス。Introducing Jamba: AI21’s Groundbreaking SSM-Transformer Model

transformer以外の選択肢だとRWKV-6 Finch(RWKV-x060-World-1B6-v2.1-20240328-ctx4096)がhugging faceで試用可能となっている。長文翻訳はまだまだという感じだがfine tuning等やってみたいところ
RWKV-Gradio-1 – a Hugging Face Space by BlinkDL

Grok-1.5(および2)のアナウンスもありこちらも要注目。
Announcing Grok-1.5 (x.ai)
XユーザーのElon Muskさん: 「Should be available on 𝕏 next week. Grok 2 should exceed current AI on all metrics. In training now.」 / X (twitter.com)

GPT-4やGemini、ClaudeなどAPIベースの選択肢以外が広がることを期待したい。

SAFE: Search-Augmented Factuality Evaluator

  • Long-form factuality in large language models [59.3]
    大規模言語モデ ル(LLM)は、しばしば、オープンエンドトピックの事実検索プロンプトに応答するときに、事実エラーを含むコンテンツを生成する。 まず最初にGPT-4を用いて、38のトピックにまたがる何千もの質問からなるプロンプトセットであるLongFactを生成します。 そこで我々は,LLMエージェントを検索拡張現実性評価器 (SAFE) と呼ぶ手法により,長期的事実性の自動評価器として使用できることを提案する。
    論文  参考訳(メタデータ)   (Wed, 27 Mar 2024 17:48:55 GMT)
  • 事実性の間違いを重視したベンチマーク、「SAFE utilizes an LLM to break down a long-form response into a set of individual facts and to evaluate the accuracy of each fact using a multi-step reasoning process comprising sending search queries to Google Search and determining whether a fact is supported by the search results.」「Empirically, we demonstrated that SAFE achieves superhuman performance by agreeing with 72% of human annotations and winning 76% of examples out of a set of 100 randomly-sampled disagreement cases.」とのこと。ベンチマークとしての評価結果はGPT-4-turbo > Gemini Ultra > Calude-3 OPUSでClaude 3 OPUSはハルシネーションが多いのでは?という印象を裏付けていそうに思う。SAFEは評価用だけでなく二次チェックにも有用そう。
  • リポジトリはgoogle-deepmind/long-form-factuality: Benchmarking long-form factuality in large language models. Original code for our paper “Long-form factuality in large language models.” (github.com)

InternLM2

  • InternLM2 Technical Report [159.7]
    本稿では,オープンソースのLarge Language Models (LLM) であるInternLM2を紹介する。 InternLM2の事前トレーニングプロセスは細部まで詳細に書かれており、多様なデータ型の準備が強調されている。 InternLM2は、4kトークンでトレーニングされた長期的依存関係を効率的にキャプチャし、事前トレーニングおよび微調整の段階で32kトークンに進む。
    論文  参考訳(メタデータ)   (Tue, 26 Mar 2024 00:53:24 GMT)
  • InternLM2のテクニカルレポート。詳細な情報が載っておりとても興味深い。Chatの性能は高い。学術研究用であれば自由に利用できるものではあるがウェイトは独自ライセンス。
  • リポジトリはInternLM/InternLM: Official release of InternLM2 7B and 20B base and chat models. 200K context support (github.com)