Many-Shot In-Context Learning

  • Many-Shot In-Context Learning [57.6]
    大規模言語モデル (LLMs) は、文脈内学習 (ICL) において優れている 我々は、多種多様な生成的および識別的タスクにおける顕著なパフォーマンス向上を観察する。 Reinforced と Unsupervised ICL は多発的なシステムでは極めて有効であることがわかった。
    論文  参考訳(メタデータ)   (Wed, 17 Apr 2024 02:49:26 GMT)
  • Gemini 1.5などで可能になったMany shot(500 shotなど)などの効果の分析。性能が上がる例が多いが「On some tasks (e g , code verifier, planning), we did observe slight performance deterioration beyond a certain number of shots.」とのこと。Reinforced ICL、Unsupervised ICL という人間を介さないICLも検証していて「We found that, for problem-solving domains where human-generated rationales are expensive to obtain, Reinforced and Unsupervised ICL can obtain strong performance when compared to ICL with human data.」とのこと。
  • 長いコンテキストの利点をアピールする論文。SSMだとどうなんるんやろという興味がある。

Which questions should I answer? Salience Prediction of Inquisitive Questions

  • Which questions should I answer? Salience Prediction of Inquisitive Questions [118.1]
    非常に健全な質問は、同じ記事で経験的に答えられる可能性が高いことを示す。 質問に対する回答が,ニュースの要約品質の指標であることを示すことで,我々の知見をさらに検証する。
    論文  参考訳(メタデータ)   (Tue, 16 Apr 2024 21:33:05 GMT)
  • 質問の良さを予測するためのデータセット構築とモデルの提案。「Our work connects two ideas: a theoretical idea of which questions are useful for understanding and likely to be answered later in a text, and an empirical notion of what questions are useful.」
  • 論文でも指摘されている通り、品質評価にも重要。fine tunedなモデルはGPT-4をoutperformとのことだが、(Limitaionに記載の通り)ドメインの影響なども知りたいところ。
  • リポジトリはGitHub – ritikamangla/QSalience

Multilingual Large Language Model: A Survey of Resources, Taxonomy and Frontiers

  • Multilingual Large Language Model: A Survey of Resources, Taxonomy and Frontiers [81.5]
    本稿では,MLLM(Multilingual Large Language Model)文学における最近の進歩と新たなトレンドを要約する一貫した視点を提示する。 私たちの研究がコミュニティに迅速なアクセスを提供し、MLLMにおける画期的な研究を促進することを願っています。
    論文  参考訳(メタデータ)   (Sun, 07 Apr 2024 11:52:44 GMT)
  • マルチリンガルLLMに対するサーベイ。アプローチも結果も様々でありがたいサーベイであり、かつ論文リストがプロジェクトサイトに整理して一覧化されているのもありがたい。
  • プロジェクトサイトはMLLM (multilingual-llm.net)