Cohere Command R+, AURORA-M, HyperCLOVA X, EURUS

先週もLLM関連の話題が多かった。Cohere Command R+はGPT-4相当をうたう104BのLLMであり、huggingfaceでCC-BY-NCで公開されている。完全に商用クオリティのモデルが非商用利用のみとはいえ公開されたのは衝撃的だった。研究コミュニティに対する大きな貢献だと思う。

Aurora-MはStarCoderPlusから継続学習によって作られたオープンなLLM、HyperCLOVA XはNAVERによる韓国語に強いLLMである。EURUSなどオープンなLLMを強化しようというトライも多い。

Introducing Command R+: A ScalableLLM Built for Business
Command R+は、エンタープライズグレードのワークロードに取り組むために設計された最先端のRAG最適化モデルである。最初はmicrosoft azureで利用可能だ。
Introducing Command R+: A Scalable LLM Built for Business (cohere.com)
Mistral Large以上、GPT-4-Turbo相当を主張するLLM、商用利用不可の条件ではあるが研究用に使用可能なモデルが公開されているのがすごい
リポジトリはCohereForAI/c4ai-command-r-plus · Hugging Face

  • Aurora-M: The First Open Source Multilingual Language Model Red-teamed according to the U.S. Executive Order [123.7]
    Aurora-Mは、英語、フィンランド語、ヒンディー語、日本語、ベトナム語、コードで訓練された15Bパラメータの多言語オープンソースモデルである。 これは、人間がレビューした安全命令を微調整した初めてのオープンソース多言語モデルである。 様々なタスクや言語で厳格に評価されており、破滅的な忘れ物に対する頑丈さを示している。
    論文  参考訳(メタデータ)   (Sat, 30 Mar 2024 15:38:54 GMT)
  • 15Bのオープンな多言語LLM、性能はLlama2 13Bと競合という感じではあるが安全性に非常に気を使ったモデルになっている。
  • プロジェクトサイトはAurora-M models – a aurora-m Collection (huggingface.co)
  • HyperCLOVA X Technical Report [119.1]
    韓国語と文化に合わせた大型言語モデル(LLM)のファミリーであるHyperCLOVA Xを紹介する。 HyperCLOVA Xは韓国語、英語、コードデータのバランスの取れた混合でトレーニングされ、その後、高品質な人間アノテーション付きデータセットによる命令チューニングが行われた。 このモデルは、韓国語と英語の両方で、包括的な推論、知識、常識、事実性、コーディング、数学、チャット、指示追従、無害など、様々なベンチマークで評価されている。
    論文  参考訳(メタデータ)   (Tue, 02 Apr 2024 13:48:49 GMT)
  • NAVERによるLLM,韓国語能力が高いが、英語でもLlama2 70Bと競っており能力が高い。パラメータ数は非公表?
  • Advancing LLM Reasoning Generalists with Preference Trees [119.6]
    推論に最適化された大規模言語モデル(LLM)のスイートであるEulusを紹介する。 Eurusモデルは、様々なベンチマークでオープンソースのモデルの間で最先端の結果を得る。
    論文  参考訳(メタデータ)   (Tue, 02 Apr 2024 16:25:30 GMT)
  • Mistral-7B, CodeLlama-70BからSFTされたモデル、UltraInteractというデータセットがコア。「EURUS-70B beats GPT-3.5 Turbo in reasoning through a comprehensive benchmarking across 12 tests covering five tasks」はすごい
  • OpenBMB/Eurus (github.com)

Against The Achilles’ Heel: A Survey on Red Teaming for Generative Models 

  • Against The Achilles’ Heel: A Survey on Red Teaming for Generative Models [60.2]
    赤いチーム作りの分野は急速に成長しており、パイプライン全体をカバーする包括的な組織の必要性を強調している。 120以上の論文を調査し,言語モデル固有の能力に根ざした,きめ細かい攻撃戦略の分類を導入した。 我々は,様々な自動レッド・チーム・アプローチを統合するサーチ・フレームワークを開発した。
    論文  参考訳(メタデータ)   (Sun, 31 Mar 2024 09:50:39 GMT)
  • 社会実装において重要なRed Teamingに関するサーベイ。「Figure 2: An overview of GenAI red teaming flow.」から始まる構成がわかりやすい。CC-BYなのもうれしいところ。

Many-shot jailbreaking \ Anthropic
我々は、有用で無害で正直なAIアシスタントをターゲットにした多発ジェイルブレーキング(MSJ)を研究した。MSJは数発のジェイルブレークの概念を拡張し、攻撃者はモデルが通常答えることを拒否する一連のクエリを含む架空の対話でモデルをプロンプトする。
「We found that the effectiveness of attacks, and of in-context learning more generally, could be characterized by simple power laws.」というとてもシンプルな攻撃が有効であったりもして攻撃戦略も日々進化している状況で安全性を確保していくのはとても大変。

ReFT: Representation Finetuning for Language Models & LoReFT: Low-rank Linear Subspace ReFT

  • ReFT: Representation Finetuning for Language Models [74.5]
    我々は、Representation Finetuning (ReFT)メソッドのファミリーを開発する。 LoReFTは、従来の最先端PEFTよりも10x-50倍高いパラメータ効率の介入を学習する。 本稿では,8つのコモンセンス推論タスク,4つの算術推論タスク,Alpaca-Eval v1.0,GLUEについて紹介する。
    論文  参考訳(メタデータ)   (Thu, 04 Apr 2024 17:00:37 GMT)
  • 「Instead of adapting model weights, ReFT methods train interventions that manipulate a small fraction of model representations in order to steer model behaviors to solve downstream tasks at inference time.」という手法の提案、LoRAと比べて少ないパラメータで強力な性能を発揮しているように見える。「It takes ≈18 minutes to train our Llama-2 Chat 7B on a single A100 40G GPU with ≈1MB parameters on disk.」と計算時間も少ない。
  • リポジトリはstanfordnlp/pyreft: ReFT: Representation Finetuning for Language Models (github.com)