Can-Do! A Dataset and Neuro-Symbolic Grounded Framework for Embodied Planning with Large Multimodal Models

  • Can-Do! A Dataset and Neuro-Symbolic Grounded Framework for Embodied Planning with Large Multimodal Models [85.6]
    具体的計画能力を評価するために設計されたベンチマークデータセットであるCan-Doを紹介する。 私たちのデータセットには400のマルチモーダルサンプルが含まれており、それぞれが自然言語のユーザ指示、環境を描写した視覚イメージ、状態変化、対応するアクションプランで構成されています。 ニューログラウンド(NeuroGround)は、まず認識された環境状態において計画生成を基礎とし、次に象徴的な計画エンジンを活用してモデル生成計画を強化する、ニューログラウンド(NeuroGround)を提案する。
    論文  参考訳(メタデータ)   (Sun, 22 Sep 2024 00:30:11 GMT)
  • 多様なシナリオでの具体的計画能力を測るマルチモーダルなデータセットとこれらを解くためにシンボリックエンジンを活用するNeuroGroundの提案。
  • リポジトリはCan-Do! A Dataset for Embodied Planning with Large Multimodal Models (embodied-planning.github.io)

LLaVA-Critic: Learning to Evaluate Multimodal Models

  • LLaVA-Critic: Learning to Evaluate Multimodal Models [110.1]
    本稿では,LLaVA-Criticについて紹介する。LLaVA-Criticは,汎用評価器として設計された,最初のオープンソースの大規模マルチモーダルモデル(LMM)である。 LLaVA-Criticは、さまざまな評価基準とシナリオを組み込んだ高品質な批判的インストラクションフォローデータセットを使用してトレーニングされている。
    論文  参考訳(メタデータ)   (Thu, 03 Oct 2024 17:36:33 GMT)
  • マルチモーダルなタスクに対しての評価を行うモデルの提案。データ構築もMLLMを多用するアプローチになっていて興味深いが、ライセンス的に大丈夫なんだろうかという若干の不安。
  • プロジェクトサイトはLLaVA-OneVision: Easy Visual Task Transfer (llava-vl.github.io)