コンテンツへスキップ
- Jailbreaking LLM-Controlled Robots [82.0]
大規模言語モデル(LLM)は、文脈推論と直感的な人間とロボットの相互作用を可能にすることによって、ロボット工学の分野に革命をもたらした。 LLMは脱獄攻撃に弱いため、悪意のあるプロンプトはLLMの安全ガードレールをバイパスすることで有害なテキストを誘発する。 LLM制御ロボットをジェイルブレイクするアルゴリズムであるRoboPAIRを紹介する。
論文 参考訳(メタデータ) (Thu, 17 Oct 2024 15:55:36 GMT)
- LLMが制御するロボットに対する脱獄攻撃、「(i) a white-box setting, wherein the attacker has full access to the NVIDIA Dolphins self-driving LLM, (ii) a gray-box setting, wherein the attacker has partial access to a Clearpath Robotics Jackal UGV robot equipped with a GPT-4o planner, and (iii) a black-box setting, wherein the attacker has only query access to the GPT-3.5-integrated Unitree Robotics Go2 robot dog. 」を設定、「In each scenario and across three new datasets of harmful robotic actions, we demonstrate that ROBOPAIR, as well as several static baselines, finds jailbreaks quickly and effectively, often achieving 100% attack success rates.」とのこと。。大きな脅威になりうる。
- プロジェクトサイトはRoboPAIR
- Latent Action Pretraining from Videos [156.9]
一般行動モデル(LAPA)のための潜在行動事前訓練について紹介する。 LAPA(英: LAPA)は、VLA(Vision-Language-Action)モデルに接地型ロボットアクションラベルを含まない教師なしの訓練方法である。 本稿では,ロボットアクションラベルを持たないインターネット規模のビデオから学習する手法を提案する。
論文 参考訳(メタデータ) (Tue, 15 Oct 2024 16:28:09 GMT)
- インターネットにあるようなビデオデータからVLAを構築する手法の提案、「Across three benchmarks spanning both simulation and real-world robot experiments, we show that our method significantly improves transfer to downstream tasks compared to existing approaches.」とのこと
- プロジェクトサイトはLAPA
- MRAG-Bench: Vision-Centric Evaluation for Retrieval-Augmented Multimodal Models [115.2]
MRAG-Benchというマルチモーダル検索拡張生成ベンチマークを導入する。 MRAG-Benchは16,130枚の画像と1,353個の人間による複数の質問からなる。 その結果,すべての大規模視覚言語モデル (LVLM) は,テキスト知識と比較して画像で拡張すると改善が見られた。
論文 参考訳(メタデータ) (Thu, 10 Oct 2024 17:55:02 GMT)
- マルチモーダルなRAGのベンチマーク、様々なモデルのスコア一覧表もとても参考になる。
- リポジトリはMRAG-Bench (mragbench.github.io)