コンテンツへスキップ
- Multi-lingual and Multi-cultural Figurative Language Understanding [69.5]
図形言語は人間のコミュニケーションに浸透するが、NLPでは比較的過小評価されている。 Hindi, Indonesian, Javanese, Kannada, Sundanese, Swahili, Yorubaの7つの多様な言語に関するデータセットを作成しました。 我々のデータセットから,各言語は,同じ領域から派生した言語間で最も高い重なり合いを持つ,図形表現の文化的・地域的概念に依存していることが明らかとなった。 全ての言語は、事前学習データと微調整データの可用性を反映した性能の変化により、英語と比較して大きな欠陥がある。
論文 参考訳(メタデータ) (Thu, 25 May 2023 15:30:31 GMT)
- 多言語(多文化)な比喩表現(figurative language)のデータセット。
- 面白いデータではあるが、日本語部分に違和感がある例があるような気もしなくはない…時間があれば修正提案をしてみようかと思う
- GitHub – simran-khanuja/Multilingual-Fig-QA: Creating the multilingual version of Fig-QA
- XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented Languages [105.5]
データ不足は、多言語NLPシステムの開発において重要な問題である。 我々はXTREME-UPを提案する。XTREME-UPはゼロショットではなく、希少なデータシナリオに焦点を当てたベンチマークである。 XTREME-UPは、88言語にまたがる言語モデルが、9つのキーとなるユーザー中心技術上で機能する能力を評価する。
論文 参考訳(メタデータ) (Wed, 24 May 2023 06:09:28 GMT)
- 非常に多言語のNLPベンチマーク。対象タスクもASR、OCR、AutoComplete、Transliteration、Machine Translation、QA、Ritrieval for QA、NER、Semantic Parsingと多様。
- リポジトリはGitHub – google-research/xtreme-up
- LIMA: Less Is More for Alignment [112.9]
65B パラメータ LLaMa 言語モデル LIMA のトレーニングを行う。 LIMAは、非常に強力なパフォーマンスを示し、少数の例から特定のレスポンスフォーマットに従うことを学ぶ。 制御されたヒトの研究では、LIMAからの反応は43%の症例において、GPT-4に等しいか、厳格に好まれる。
論文 参考訳(メタデータ) (Thu, 18 May 2023 17:45:22 GMT)
- 強力なベースモデルとよくキュレーションされた1000個の例があれば複雑なクエリを扱えるChatGPTのような動きが可能という報告。
- 「Taken together, these results strongly suggest that almost all knowledge in large language models is learned during pretraining, and only limited instruction tuning data is necessary to teach models to produce high quality output.」ということで事前学習モデルの重要性は他の報告と整合的。
- How Do In-Context Examples Affect Compositional Generalization? [86.6]
本稿では,コンテクスト内構成一般化を検証するためのテストスイートであるCoFeを提案する。 構成一般化性能は、文脈内例の選択によって容易に影響を受けることが判明した。 我々の系統実験は、文脈内サンプルは、テストケースと構造的に似ており、互いに異なっており、個別に単純であることを示します。
論文 参考訳(メタデータ) (Thu, 25 May 2023 02:34:40 GMT)
- in context learningのテストスイートの提案、詳細な分析がなされており非常に参考になる。「Our systematic experiments indicate that in-context examples should be structurally similar to the test case, diverse from each other, and individually simple.」とあるのは直感的にもそうだとは思うが、それぞれの要素について検証がなされているのが凄い。
- リポジトリはContextualSP/cofe at master · microsoft/ContextualSP · GitHub
- FActScore: Fine-grained Atomic Evaluation of Factual Precision in Long Form Text Generation [130.4]
FActScoreは、世代を一連の原子事実に分解し、信頼できる知識ソースによって支持される原子事実の割合を計算する新しい評価手法である。 我々は、最先端の商用LMが生み出した人々のFActScoreを得るために、広範囲にわたる人的評価を行う。 また、検索と強力な言語モデルを用いてFActScoreを2%未満のエラー率で推定する自動モデルも導入する。
論文 参考訳(メタデータ) (Tue, 23 May 2023 17:06:00 GMT)
- 生成されたテキストの事実性を判定する手法の提案と評価。生成分を事実情報まで分割し、知識ソースとの整合性を確認するアプローチのよう。
- 検証結果も非常に興味深い。特にOSSモデルのスコアはベースモデルの性能が影響しているように見え、チャットの模倣と基礎モデルの能力は別物であることを示唆(The False Promise of Imitating Proprietary LLMsと同じ示唆)している気がする。
- Chameleon: Plug-and-Play Compositional Reasoning with Large Language Models [195.7]
大規模言語モデル(LLM)は、様々な自然言語処理タスクの解決において顕著な進歩を遂げている。 LLMは、最新の情報にアクセスできないため、固有の制限がある。 本稿では,LLMを合成推論のためのプラグアンドプレイモジュールで拡張するAIシステムChameleonを紹介する。
論文 参考訳(メタデータ) (Wed, 24 May 2023 17:52:19 GMT)
- 様々な手法(off-the-shelf vision models, web search engines, Python functions, and heuristic-based modules)を組み合わせて問題を解くプランナー&実行フレームワークの提案。4ページの表からはHuggingGPTなど近い発想の手法よりも多様なツールに対応していることが見て取れる。ベンチマーク結果も優れている(Adaptorなどを使ったFinetune以上に見える)
- プロジェクトサイトはChameleon: Plug-and-Play Compositional Reasoning with Large Language Models (chameleon-llm.github.io)
- RWKV: Reinventing RNNs for the Transformer Era [27.3]
本稿では,トランスフォーマーの効率的な並列化学習とRNNの効率的な推論を組み合わせた新しいモデルアーキテクチャを提案する。 提案手法は線形アテンション機構を利用して,トレーニング中に計算を並列化し,推論中に一定の計算量とメモリの複雑さを維持するトランスフォーマーあるいはRNNとしてモデルを定式化することができる。 我々の実験は、RWKVが同様の大きさのトランスフォーマーと同等に動作していることを示し、将来の作業がこのアーキテクチャを活用してより効率的なモデルを作成することができることを示唆している。
論文 参考訳(メタデータ) (Mon, 22 May 2023 13:57:41 GMT)
- 性能が高いと噂のRNNベースのRWKVの論文
- 「While many alternatives to Transformers have been proposed with similar claims, ours is the first to back up those claims with pretrained models with tens of billions of parameters.」という記載が熱く、おっしゃる通りで実用レベルの大きさ&有名ベンチマークで有効性を示すことは重要だと思う。
- リポジトリはGitHub – BlinkDL/RWKV-LM: RWKV is an RNN with transformer-level LLM performance. It can be directly trained like a GPT (parallelizable). So it’s combining the best of RNN and transformer – great performance, fast inference, saves VRAM, fast training, “infinite” ctx_len, and free sentence embedding.