コンテンツへスキップ
- A Neural Network Solves and Generates Mathematics Problems by Program Synthesis: Calculus, Differential Equations, Linear Algebra, and More [8.4]
質問をプログラミングタスクに変換し、プログラムを自動的に生成し、実行します。 これは、大学レベルの数学コースの質問を自動的に解き、評価し、生成する最初の作品である。
論文 参考訳(メタデータ) (Fri, 31 Dec 2021 18:57:31 GMT)- (深層学習で解くのは難しいとされていた)数学の問題が事前学習済みモデル(Transformer)+プログラミングタスクとしてのfine tuningで解けるとの報告。
- Responsive Listening Head Generation: A Benchmark Dataset and Baseline [58.2]
本研究では、応答型リスニングヘッド生成タスクを、複数の入力に応答する動きと表現を持つ非言語ヘッドの合成として定義する。 音声によるジェスチャーや音声のヘッド生成とは違って,いくつかの研究分野の恩恵を期待して,このタスクにより多くのモーダルを導入する。
論文 参考訳(メタデータ) (Mon, 27 Dec 2021 07:18:50 GMT)- 67人の講演者、76人の聴取者が3つの異なる態度で集結した会話ビデオコーパス「Responsive Listener Dataset(RLD)」に関する論文。表情を含め合成するのは面白く(難しいと思われる)タスク。
- プロジェクトサイトはRLD Dataset (mhzhou.com)
- A Survey on Gender Bias in Natural Language Processing [22.9]
自然言語処理における性別バイアスに関する304論文について調査する。 ジェンダーバイアスの検出と緩和に対するコントラストアプローチの比較を行った。 性別偏見の研究は、4つの中核的な限界に悩まされている。1)ジェンダーを流動性と連続性を無視した二変数変数として扱う。 2) 単言語で実施されている。 3) 倫理的考察を無視している。 4) 男女差の非常に限定的な定義と, 評価基準とパイプラインの欠如に根本的な欠陥がある。
論文 参考訳(メタデータ) (Tue, 28 Dec 2021 14:54:18 GMT)- AIの社会実装において逃げてはいけないジェンダーバイアスに関するサーベイ。4つの問題が指摘されているが、その中でもジェンダー及びジェンダーバイアスの定義ができていないというのは非常に重要な指摘であると思う。
- On some Foundational Aspects of Human-Centered Artificial Intelligence [52.0]
人間中心人工知能(Human Centered Artificial Intelligence)の意味については明確な定義はない。 本稿では,AIコンポーネントを備えた物理・ソフトウェア計算エージェントを指すHCAIエージェントについて紹介する。 HCAIエージェントの概念は、そのコンポーネントや機能とともに、人間中心のAIに関する技術的および非技術的議論を橋渡しする手段であると考えています。
論文 参考訳(メタデータ) 参考訳(全文) (Wed, 29 Dec 2021 09:58:59 GMT)- 人間中心のAIを観察、要件、アクション、説明、モデルの側面から開設した論文。
- A Survey on non-English Question Answering Dataset [0.0]
この調査の目的は、多くの研究者がリリースした既存のデータセットを認識し、要約し、分析することである。 本稿では,フランス語,ドイツ語,日本語,中国語,アラビア語,ロシア語など,英語以外の共通言語で利用できる質問応答データセットと,多言語および多言語間の質問応答データセットについて検討する。
論文 参考訳(メタデータ) (Mon, 27 Dec 2021 12:45:06 GMT)- 英語以外のQAデータセットのサーベイ。日本語で挙げられていたJP-Newsは公開されているんだろうか・・・?
- PRIME: A Few Primitives Can Boost Robustness to Common Corruptions [60.1]
ディープ・ネットワークは画像の破損を 一般化するのに苦労しています。 本稿では,最大エントロピー画像変換の単純なファミリーからなる汎用データ拡張スキームPRIMEを提案する。 PRIMEは従来の汚損防止技術よりも優れており,そのシンプルさとプラグ・アンド・プレイ性により,他の手法と組み合わせて堅牢性をさらに向上させることができる。
論文 参考訳(メタデータ) (Mon, 27 Dec 2021 07:17:51 GMT)
- Explainable Artificial Intelligence for Pharmacovigilance: What Features Are Important When Predicting Adverse Outcomes? [21.3]
我々は、個人の健康情報を入力として取り込むモデルを作成し、その個人が急性冠症候群を発症する確率を予測する。 XAIを用いて、特定の薬物がこれらのACS予測に与える影響を定量化した。 ロフェコキシブとセロコキシブの薬物放出特性は、ACS関連副作用予測に0以上の寄与があることが判明した。
論文 参考訳(メタデータ) (Sat, 25 Dec 2021 09:00:08 GMT)- 医薬品の副作用予測でXAIが有用、現在使われている統計手法に対してvaluable additionになるという内容の論文。MDI(Mean Decrease of Impurity)とMDA(Mean Decrease in Accuracy)、LIME、SHAPを比較している。
- 既存手法の完全代替は無理だよねというのは納得。それと本件では説明対象がツリー系手法だが、その他の手法でどうなるかも興味がある。
- Multimodal Image Synthesis and Editing: A Survey [41.6]
マルチモーダル画像合成と編集は 近年 ホットな研究テーマになっている。 明確な手がかりを提供する従来のビジュアルガイダンスとは異なり、マルチモーダルガイダンスは画像合成と編集において直感的で柔軟な手段を提供する。 本稿では、GAN(Generative Adversarial Networks)、GAN Inversion、Transformer、NeRFやDiffusionモデルなどを含む詳細なフレームワークを用いたマルチモーダル画像合成と編集手法について述べる。
論文 参考訳(メタデータ) 参考訳(全文) (Mon, 27 Dec 2021 10:00:16 GMT)
- CUGE: A Chinese Language Understanding and Generation Evaluation Benchmark [144.1]
汎用言語インテリジェンス評価は、自然言語処理の長年の目標である。 汎用言語インテリジェンス評価には,ベンチマーク自体が包括的で体系的なものである必要がある,と我々は主張する。 以下に示す機能を備えた中国語理解・生成評価ベンチマークであるCUGEを提案する。
論文 参考訳(メタデータ) (Mon, 27 Dec 2021 11:08:58 GMT)- 自然言語タスクが幅広く扱われたベンチマークで、階層別に整理されておりリーダーボードが存在。
- 日本語版が欲しい・・・動きはあるようなので、このような統一的なものが作られることを期待
- プロジェクトサイトは智源指数 (baai.ac.cn)
- JoJoGAN: One Shot Face Stylization [6.0]
本研究は,細部を正確に把握したワンショット画像スタイリングを実現することを目的としている。 GANインバージョンと事前学習したStyleGANのファインチューンを用いて,参照スタイルの画像から実データを近似した。 次に、StyleGANを一般化して、学習したスタイルを他のすべての画像に適用できるように促します。
論文 参考訳(メタデータ) (Wed, 22 Dec 2021 03:13:16 GMT)