コンテンツへスキップ
- Mental-LLM: Leveraging Large Language Models for Mental Health Prediction via Online Text Data [38.9]
オンラインテキストデータを用いて,様々なメンタルヘルス予測タスクにおける多言語モデル(LLM)の総合評価を行った。 その結果、ゼロショットプロンプト、少数ショットプロンプト、命令微調整によるLLMの有望な性能が示された。 我々の最も精巧なモデルであるMental-AlpacaとMental-FLAN-T5は、バランスの取れた精度でGPT-3.5を10.9%上回り、GPT-4(250倍、150倍)を4.8%上回りました。
論文 参考訳(メタデータ) (Wed, 16 Aug 2023 06:04:48 GMT)
- メンタルヘルス予測タスクへのLLM活用に関する報告。zero shot, few shot, instruction finetuningといった様々な方法&Alpaca, FLAN, GPT-3.5, GPT-4など様々なモデルで評価されており興味深い。
- 「Instruction finetuning on multiple mental health datasets can significantly boost the performance of LLMs on various mental health prediction tasks.」や「Although task-solving-focused LLMs may have better performance in the zero-shot setting for mental health prediction tasks, dialogue-focused LLMs have a stronger capability of learning from human natural language and can improve more significantly after finetuning.」など興味深い結果となっている。メンタルヘルスというドメインに依存した話なのか一般的な傾向なのかはよくわからないが、様々なアプローチの結果を比較するのは重要であるとの感想。
- Towards Generalist Biomedical AI [28.7]
我々は,汎用バイオメディカルAIシステムの概念実証であるMed-PaLM Multimodal(Med-PaLM M)を紹介する。 Med-PaLM Mは、バイオメディカルデータを柔軟にエンコードし解釈する大規模なマルチモーダル生成モデルである。 モデル生成(およびヒト)胸部X線検査の放射線学的評価を行い, モデルスケールでの性能向上を観察した。
論文 参考訳(メタデータ) (Wed, 26 Jul 2023 17:52:22 GMT)
- マルチモーダルな医療用LLMの提案、PaLM-E を医療ドメインにfinetuning して構成。ベンチマーク結果はオリジナルのPaLM-Eより優れており、特化型モデルを超える例もあるとのこと。
- パラメータサイズ12B、84B、562Bの比較もあるが、84B < 562Bが成り立たない例も多いのが興味深い。
- The Potential and Pitfalls of using a Large Language Model such as ChatGPT or GPT-4 as a Clinical Assistant [12.0]
ChatGPTとGPT-4はいくつかの医療領域で有望な性能を示した。 われわれはChatGPTとGPT-4を用いて2つの分析を行った。 患者の評価では、GPT-4は4回に3回、正確に診断できる。しかし、重大な医学的所見を見落とし、不必要な調査や過剰な治療の勧告など、事実的に誤記の言及があった。 これらの問題とプライバシーの懸念が組み合わさって、これらのモデルが現実の臨床試験に不適切になっている。
論文 参考訳(メタデータ) (Sun, 16 Jul 2023 21:19:47 GMT)
- 医療分野におけるGPT-4活用可能性の検討、(今までも色々指摘されている通り)誤記の問題は大きいよう。
- A Comprehensive Picture of Factors Affecting User Willingness to Use Mobile Health Applications [62.6]
本研究の目的は,mHealthアプリのユーザ受け入れに影響を与える要因を検討することである。 利用者のデジタルリテラシーは、個人情報を共有するオンライン習慣に続き、使用意欲に最も強い影響を与える。 居住国、年齢、民族、教育などの利用者の人口統計学的背景は、顕著な緩和効果がある。
論文 参考訳(メタデータ) (Wed, 10 May 2023 08:11:21 GMT)
- モバイルヘルスアプリケーションを受け入れるか否かについて、どのような因子が重要か調べた論文。複数の国が対象だが、残念ながら日本は入っていない。
- 「our study reveals that users’ privacy concern had only a moderate impact, which was outweighed by users’ digital literacy.」というのはやや意外な結果。日本だと話は別だったりするのだろうか。
- Large Language Models Encode Clinical Knowledge [21.6]
大規模言語モデル(LLM)は、自然言語の理解と生成において印象的な能力を示している。 本稿では, 現実性, 正確性, 潜在的害, バイアスを含む複数の軸に沿ったモデル回答の人為的評価のための枠組みを提案する。 本研究は,モデル尺度とインストラクション・インシデント・チューニングにより,理解,知識の想起,医学的推論が向上することを示す。
論文 参考訳(メタデータ) (Mon, 26 Dec 2022 14:28:24 GMT)
- FLAN-PaLM+様々なテクニックおよびFLAN-PaLM+instruction prompt tuningで構築したMed-PaLMにより様々な医療分野のベンチマークでSoTA
- 人間(医者)には及んでいないものの試験合格水準にあるように見え、衝撃的な結果…
- A Survey on Medical Document Summarization [40.8]
インターネットは医療業界に劇的な影響を与えており、文書をデジタルで保存、共有、管理することができる。 これにより、重要なデータを見つけ、共有しやすくなり、患者のケアを改善し、医学研究の機会を増やした。
論文 参考訳(メタデータ) (Sat, 3 Dec 2022 18:46:44 GMT)
- 医療ドメインのマルチドキュメント要約に関するサーベイ
- NLP全般の傾向かもしれないが、最近の盛り上がりを感じる内容
- Unsupervised Machine Learning for Explainable Medicare Fraud Detection [16.3]
我々は、医療を超過するプロバイダを特定するための、新しい機械学習ツールを開発した。 大規模なメディケアの請求データを用いて、詐欺や過度な監視と整合したパターンを識別する。 提案手法は、ラベル付きトレーニングデータに頼らず、完全に教師なしである。
論文 参考訳(メタデータ) (Sat, 5 Nov 2022 15:37:51 GMT)
- Medicare データを用いた不正検出。
- MEDFAIR: Benchmarking Fairness for Medical Imaging [44.7]
MEDFAIRは、医療画像のための機械学習モデルの公正性をベンチマークするフレームワークである。 モデル選択基準の未検討の問題は、公正な結果に重大な影響を及ぼす可能性がある。 異なる倫理的原則を必要とするさまざまな医療応用シナリオを推奨する。
論文 参考訳(メタデータ) (Tue, 4 Oct 2022 16:30:47 GMT)