Mental-LLM

  • Mental-LLM: Leveraging Large Language Models for Mental Health Prediction via Online Text Data [38.9]
    オンラインテキストデータを用いて,様々なメンタルヘルス予測タスクにおける多言語モデル(LLM)の総合評価を行った。 その結果、ゼロショットプロンプト、少数ショットプロンプト、命令微調整によるLLMの有望な性能が示された。 我々の最も精巧なモデルであるMental-AlpacaとMental-FLAN-T5は、バランスの取れた精度でGPT-3.5を10.9%上回り、GPT-4(250倍、150倍)を4.8%上回りました。 
    論文  参考訳(メタデータ)   (Wed, 16 Aug 2023 06:04:48 GMT)
  • メンタルヘルス予測タスクへのLLM活用に関する報告。zero shot, few shot, instruction finetuningといった様々な方法&Alpaca, FLAN, GPT-3.5, GPT-4など様々なモデルで評価されており興味深い。
  • 「Instruction finetuning on multiple mental health datasets can significantly boost the performance of LLMs on various mental health prediction tasks.」や「Although task-solving-focused LLMs may have better performance in the zero-shot setting for mental health prediction tasks, dialogue-focused LLMs have a stronger capability of learning from human natural language and can improve more significantly after finetuning.」など興味深い結果となっている。メンタルヘルスというドメインに依存した話なのか一般的な傾向なのかはよくわからないが、様々なアプローチの結果を比較するのは重要であるとの感想。

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です