Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus

  • Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus [99.3]
    大規模言語モデル(LLM)は、様々な分野にわたる印象的なパフォーマンスで大きな人気を集めている。 LLMは、ユーザの期待を満たさない非現実的あるいは非感覚的なアウトプットを幻覚させる傾向がある。 LLMにおける幻覚を検出するための新しい基準のない不確実性に基づく手法を提案する。
    論文  参考訳(メタデータ)   (Wed, 22 Nov 2023 08:39:17 GMT)
  •  reference-freeなハルシネーション検出手法の提案、「The proposed method aims to imitate human factuality checking by considering three aspects: focus on informative keywords, focus on preceding words and focus on token properties.」という方法
  • リポジトリはGitHub – zthang/Focus

Language Models Hallucinate, but May Excel at Fact Verification

  • Language Models Hallucinate, but May Excel at Fact Verification [95.6]
    大規模言語モデル(LLM)はしばしば「幻惑(hallucinate)」し、結果として非実効出力となる。 GPT-3.5でさえ、事実の出力は25%以下である。 これは、進捗を計測し、インセンティブを与えるために、事実検証の重要性を浮き彫りにする。
    論文  参考訳(メタデータ)   (Mon, 23 Oct 2023 04:39:01 GMT)
  • 様々なモデルや条件でのハルシネーションについて検証した論文。「Surprisingly, FLAN-T511B, the least factual generator in our study, performs the best as a fact verifier, even outperforming more capable LLMs like GPT3.5 and ChatGPT.」という結果。
  • 「The overall inferior performance of not using evidence reveals the importance of retrieval.」は個人的な感覚にもあう。

Automatic Hallucination Assessment for Aligned Large Language Models via Transferable Adversarial Attacks

  • Automatic Hallucination Assessment for Aligned Large Language Models via Transferable Adversarial Attacks [98.2]
    本稿では,大規模言語モデルが忠実に振る舞う既存データを適切に修正し,評価データを自動的に生成する手法を開発することを目的とする。 具体的には,LLM ベースのフレームワークである Auto Debug について述べる。 実験結果から, LLMは, インプロンプトに与えられた知識とパラメトリック知識との間に矛盾がある場合, 質問応答シナリオの2つのカテゴリに幻覚を与える可能性が示唆された。
    論文  参考訳(メタデータ)   (Thu, 19 Oct 2023 06:37:32 GMT)
  • LLMを評価するため(にHallucinationを引き起こす)データセットをエビデンス付きで自動作成するAutoDebugフレームワークワークの提案、対GPT-4やPaLMに対しても有効なよう
  • プロジェクトサイトはAutomatic Hallucination Assessment for Aligned Large Language Models via Transferable Adversarial Attacks (autodebug-llm.github.io)

CoVe: Chain-of-Verification

  • Chain-of-Verification Reduces Hallucination in Large Language Models [81.0]
    言語モデルが与える反応を考慮し、誤りを訂正する能力について検討する。 モデルが最初に初期応答をドラフトするChain-of-Verification (CoVe) 法を開発した。 ウィキデータからクローズドブックMultiSpanQAまで,さまざまなタスクにおける幻覚の減少を示す。
    論文  参考訳(メタデータ)   (Wed, 20 Sep 2023 17:50:55 GMT)
  • 初期回答を作成→検証計画(検証用の質問)を作成→検証(回答・合意確認)→最終回答とすることでHallucinationを防ぐ取り組み
  • 近しい報告は多いので効果的であろうとは思うが、Are Large Language Model-based Evaluators the Solution to Scaling Up Multilingual Evaluation? – arXiv最新論文の紹介 (devneko.jp)の件もあり多言語で動作するかも興味がある。

DoLa: Decoding by Contrasting Layers

  • DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models [79.0]
    大型言語モデル(LLM)は幻覚を起こす傾向があり、事前訓練中に見られる事実から逸脱した内容を生成する。 事前学習したLLMによる幻覚を低減するための簡単な復号法を提案する。 コントラスティング・レイヤ(DoLa)アプローチによるこのデコーディングは,事実知識をよりよく提示し,誤った事実の生成を減らすことができる。
    論文  参考訳(メタデータ)   (Thu, 7 Sep 2023 17:45:31 GMT)
  • Hallucinationを低減させる手法の提案。「By emphasizing the knowledge from higher layers and downplaying the lower or intermediate layer knowledge, we can potentially make LMs more factual and consequently reduce hallucinations. 」とのこと。とても興味深い。
  • リポジトリはGitHub – voidism/DoLa: Official implementation for the paper “DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models”

Siren’s Song in the AI Ocean: A Survey on Hallucination in Large Language Models

  • Siren’s Song in the AI Ocean: A Survey on Hallucination in Large Language Models [116.0]
    大規模言語モデル(LLM)は、様々な下流タスクで顕著な機能を示している。 LLMは時折、ユーザ入力から分岐するコンテンツを生成し、以前生成されたコンテキストと矛盾する。本稿では, 幻覚の検出, 説明, 緩和に関する最近の取り組みを, LLMがもたらすユニークな課題に焦点をあてて調査する。
    論文  参考訳(メタデータ)   (Sun, 3 Sep 2023 16:56:48 GMT)
  • LLMにおけるHallucinationに関するサーベイ
  • HallucinationをInput-conflicting hallucination、Context-conflicting hallucination、Fact-conflicting hallucinationに分け、対応もPre train、SFT、RLHF、Inferenceとステージ別に分けて整理されており大変わかりやすい。

Hallucinations in Large Multilingual Translation Models

  • Hallucinations in Large Multilingual Translation Models [70.1]
    大規模多言語機械翻訳システムでは、多数の言語間で直接翻訳できることが顕著に示されている。 野生に配備されると、これらのモデルが幻覚翻訳を生成し、ユーザーの信頼を著しく損なう可能性があり、安全性の懸念が高まる。 幻覚に関する既存の研究は、主に高ソース言語で訓練された小さなバイリンガルモデルに焦点を当てている。
    論文  参考訳(メタデータ)   (Tue, 28 Mar 2023 16:17:59 GMT)
  • 最近よく話題になるHallucinationについて多言語翻訳の観点で分析した論文。ChatGPTの検証も行っている。
  • 多言語翻訳モデルでは(当然ながら)リソースの少ない言語に対してHallucinationが多発するが、ChatGPTではむしろ中リソースの言語に対して問題が多く行るのが興味深い。Hallucinationの緩和としてfallback systemを使う場合、同じトレーニングデータとアーキテクチャを共有するモデルでは効果が薄く別の外部システムを使うことが有効としている。

SelfCheckGPT

  • SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models [35.6]
    SelfCheckGPTは、ゼロリソース方式でファクトチェックブラックボックスモデルに対する単純なサンプリングベースアプローチである。 我々は、GPT-3を用いてWikiBioデータセットから個人に関するパスを生成する。 我々は,SelfCheckGPTが,非事実文と事実文とを検出できることを示す。
    論文  参考訳(メタデータ)   (Wed, 15 Mar 2023 19:31:21 GMT)
  • ゼロリソース、ブラックボックス(LLMの応答のみ利用)で実行可能なHullucination検出方法の提案。Hullucinationが起きない、LLMが良く知っているものであれば応答も近しくなるというアイデア
  • リポジトリはGitHub – potsawee/selfcheckgpt: SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models