Claude 3.7, GPT-4.5, Phi-4, Selene

先週も大きなニュースが多く、AnthropicのClaude 3.7 sonnet、OpenAIのGPT-4.5などフラグシップと呼べるモデルの発表が相次いだ。

Claude 3.7はLLM&LRMというようなモデルでコード生成で高い性能を発揮している。Claude 3.7 Sonnet and Claude Code \ Anthropic

GPT-4.5は巨大・高性能なLLMという印象GPT-4.5 が登場 | OpenAI。LRMでは解きにくい領域ではとても有効そう。ベンチマーク個別では同じLLMのDeepseek V3に負けているものがあり(GitHub – deepseek-ai/DeepSeek-V3のAIME 2024やSWE Verified)、OpenAI一強時代の終わりを感じさせる結果になっている。

このような中、MicrosoftのPhi-4シリーズでも新たなモデルが公開されているWelcome to the new Phi-4 models – Microsoft Phi-4-mini & Phi-4-multimodal。小型モデルでも十分な性能が出ているように見える。

Frontier AI needs frontier evaluators. Meet Selene.など、強力なevaluatorなどLLMやLRMを補完する動きも興味深い。

LLM, LRM, SLMやチューニング、ハイブリッド構成など様々なアプローチがあり、モデルの選択肢も増え、何を選択していくべきか悩む時代になったのかなという印象。

  • Atla Selene Mini: A General Purpose Evaluation Model [2.9]
    我々はSLMJ(Small-as-a-judge)の最先端の小型言語であるAtla Selene Miniを紹介した。 Selene Miniは、全体的なパフォーマンスにおいて最高のSLMJとGPT-4o-miniより優れた汎用評価器である。 RewardBenchで最も高い8B生成モデルである。
    論文  参考訳(メタデータ)   (Mon, 27 Jan 2025 15:09:08 GMT)
  • 上述のEvaluaterチームの論文
  • Phi-4-Mini Technical Report: Compact yet Powerful MultimodalLanguage Models via Mixture-of-LoRAs
    Phi-4MiniとPhi-4-Multimodal、コンパクトで高機能な言語とマルチモーダルモデルを紹介します。Phi-4-Miniは、高品質なウェブおよび合成データに基づいて訓練された3.8ビリオンパラメータ言語モデルである。Phi-4-Multimodalは、テキスト、視覚、音声/音声入力モダリティを単一のモデルに統合するマルチモーダルモデルである。
  • phi_4_mm.tech_report.02252025.pdf · microsoft/Phi-4-multimodal-instruct at main
  • OpenAI GPT-4.5 System Card
    GPT-4.5は事前トレーニングをさらにスケールし、強力なSTEM焦点推論モデルよりも汎用的に設計されている。幅広い知識ベース、ユーザーの意図とのより強固な連携、感情的知性の向上は、執筆、プログラミング、実用的な問題解決といったタスクに適している。
  • OpenAI GPT-4.5 System Card | OpenAI

An Open Recipe: Adapting Language-Specific LLMs to a Reasoning Model in One Day via Model Merging

  • An Open Recipe: Adapting Language-Specific LLMs to a Reasoning Model in One Day via Model Merging [12.1]
    本稿では,言語固有の大規模言語モデル(LLM)の推論能力の向上を目的とする。 DeepSeek R1は推論に優れていますが、主に英語や中国語のような高リソース言語にメリットがあります。 低リソース言語は、英語中心のトレーニングデータとモデル最適化の優位性のため、いまだに保存されていない。
    論文  参考訳(メタデータ)   (Thu, 13 Feb 2025 08:10:45 GMT)
  • LLMの推論能力を高めるためのモデルマージ+SFT、「We demonstrate that, with only publicly available datasets and a computational budget of $120, it is possible to enhance the reasoning capabilities of language-specific LLMs to match the level of DeepSeek R1, without compromising their performance on target language tasks.」とのこと
  • Qwen2.5とDeepSeek R1を利用した日本語大規模言語モデル「Qwen2.5 Bakeneko 32B」シリーズを公開|rinna株式会社でも近いアプローチをとっているように見える。

Gemini 2.0: Flash, Flash-Lite and Pro, OpenAI deep research

毎週様々なニュースが発表されるが、先週はGoogleのGemini 2.0シリーズのニュースが大きかった。特にFlash Liteはdeepseek と競争的な価格のAPIであり価格競争の面でも大きなニュースだった。Gemini 2.0: Flash, Flash-Lite and Pro – Google Developers BlogXユーザーのswyx 🔜 @aidotEngineer NYCさん: 「With Gemini 2.0 GA pricing/benchs, it’s official: @GoogleDeepMind has the Mandate of Heaven. https://t.co/pfOlxb57Yx」 / X

OpenAIはDeep researchを発表、これもPerplexityなど競合するサービスはあるもののOpenAI自ら発表したこと、性能が高いことなどもあって大きな話題になった。Introducing deep research | OpenAI

APIは強烈な価格競争が起きていて、OpenAIもアプリレイヤで戦わざるを得ないのか、それとも大きな目標に必要な動きなのかなど詳細は不明だが、LLMのコスパ向上、便利なアプリケーションの登場はユーザサイドにとってはありがたい。(一方でスタートアップにとっては…)

s1: Simple test-time scaling

  • s1: Simple test-time scaling [148.4]
    テスト時間スケーリングは、パフォーマンスを改善するために余分なテスト時間計算を使用する言語モデリングに対する、有望な新しいアプローチである。 テストタイムのスケーリングと強力な推論性能を実現するための最もシンプルなアプローチを探します。
    論文  参考訳(メタデータ)   (Mon, 03 Feb 2025 16:31:30 GMT)
  • 「We show that SFT on only 1,000 examples suffices to build a competitive reasoning model matching o1-preview and produces a model that lies on the pareto frontier 」という報告。「First, we curate a small dataset s1K of 1,000 questions paired with reasoning traces relying on three criteria we validate through ablations: difficulty, diversity, and quality. Second, we develop budget forcing to control test-time compute by forcefully terminating the model’s thinking process or lengthening it by appending “Wait” multiple times to the model’s generation when it tries to end.」とWaitを使うのが特徴的(Think before you speak: Training Language Models With Pause Tokens – arXiv最新論文の紹介を思い出す)
  • リポジトリはGitHub – simplescaling/s1: s1: Simple test-time scaling

o3-mini vs DeepSeek-R1: Which One is Safer? 

  • o3-mini vs DeepSeek-R1: Which One is Safer? [6.1]
    DeepSeek-R1はOpenAIのo3-miniと比べて非常に安全ではない。 DeepSeek-R1は、実行されたプロンプトの11.98%に対して安全ではないと答えたが、o3-miniは1.19%だった。
    論文  参考訳(メタデータ)   (Thu, 30 Jan 2025 15:45:56 GMT)
  • Deepseek R1とOpenAI o3-miniの安全性評価。既存フレームワークを使っているとはいえ、すごいスピード間での発表。(「The team conducting the study was part of the early access safety testing program of OpenAI: https://openai.com/index/ early-access-for-safety-testing/」との脚注はある)
  • 結論としては「Our results suggests that OpenAI’s o3-mini LLM is a much safer model than DeepSeek-R1, which answered unsafely to almost 12% of the executed unsafe prompts.」とのこと。

UI-TARS: Pioneering Automated GUI Interaction with Native Agents

  • UI-TARS: Pioneering Automated GUI Interaction with Native Agents [58.2]
    本稿では,GUIエージェントのネイティブモデルであるUI-TARSを紹介する。 OSWorldベンチマークでは、UI-TARSはスコアが24.6、50ステップが22.7、15ステップが22.7でクロード(それぞれ22.0と14.9)を上回っている。
    論文  参考訳(メタデータ)   (Tue, 21 Jan 2025 17:48:10 GMT)
  • GUIエージェント、UI-TARSの提案、様々なタスクでSOTAを主張。「UI-TARS incorporates several key innovations: (1) Enhanced Perception: leveraging a large-scale dataset of GUI screenshots for contextaware understanding of UI elements and precise captioning; (2) Unified Action Modeling, which standardizes actions into a unified space across platforms and achieves precise grounding and interaction through large-scale action traces; (3) System-2 Reasoning, which incorporates deliberate reasoning into multi-step decision making, involving multiple reasoning patterns such as task decomposition, reflection thinking, milestone recognition, etc. (4) Iterative Training with Reflective Online Traces, which addresses the data bottleneck by automatically collecting, filtering, and reflectively refining new interaction traces on hundreds of virtual machines.」とやれることは盛り込んだ感がすごい。
  • リポジトリはGitHub – bytedance/UI-TARS

O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning 

Chain-of-Reasoning: Towards Unified Mathematical Reasoning in Large Language Models via a Multi-Paradigm Perspective

  • Chain-of-Reasoning: Towards Unified Mathematical Reasoning in Large Language Models via a Multi-Paradigm Perspective [90.9]
    CoR(Chain-of-Reasoning)は、複数の推論パラダイムを統合する新しい統合フレームワークである。 CoRは異なる推論パラダイムを用いて複数の潜在的な答えを生成し、それらをコヒーレントな最終解へと合成する。 実験の結果,CoR-Math-7Bは現在のSOTAモデルより有意に優れていた。
    論文  参考訳(メタデータ)   (Sun, 19 Jan 2025 16:53:26 GMT)
  • 「we introduce Chain-of-Reasoning (CoR), a novel unified framework that integrates multiple reasoning paradigms—Natural Language Reasoning (NLR), Algorithmic Reasoning (AR), and Symbolic Reasoning (SR)—to enable synergistic collaboration.」とのこと。LRMとして構築しているアプローチだが、Agenticに使った場合との性能差をしりたいところ。

Deepseek R1、Sky-T1、TinyZero、Kimi k1.5

先週も大きなニュースが多かった。特にDeepSeek R1は非常に高い性能のLarge Reasoning Modelであり、しかも、オープンなモデルであることが衝撃的だった。Deepseek R1 Zeroは強化学習によって性能を上げていることも特徴的である。Kimi k1.5も近い発想で構築されたモデルで強化学習の有効性を示しているように見える。

DeepSeek R1の過程で構築したデータを用いQwenやLlamaを強化したモデルも大きく性能を上げているのが驚き。蒸留が許可されているライセンスであり、合成データを構築する元モデルとしても有力そう。

o1ライクなオープンモデルとしてはSky-T1: Train your own O1 preview model within $450GitHub – Jiayi-Pan/TinyZeroXユーザーのJiayi Panさん: 「We reproduced DeepSeek R1-Zero in the CountDown game, and it just works Through RL, the 3B base LM develops self-verification and search abilities all on its own You can experience the Ahah moment yourself for < $30 Code: https://t.co/B2IsN1PrXV Here’s what we learned 🧵 https://t.co/43BVYMmS8X」 / X)も興味深い。

それ以外にもOpenAI Operator(Introducing Operator research preview | OpenAI)はGUIエージェントの萌芽を感じさせる。

オープンモデルの盛り上がりの中、OpenAIがLLMコアだけではなく周辺領域に手を出そうとしているようにも見えて面白い。

  • DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning [147.2]
    第一世代の推論モデルであるDeepSeek-R1-ZeroとDeepSeek-R1を紹介します。 DeepSeek-R1-Zeroは大規模な強化学習を通じて訓練されている。 DeepSeek-R1は、RLの前にマルチステージトレーニングとコールドスタートデータを組み込んでいる。
    論文  参考訳(メタデータ)   (Wed, 22 Jan 2025 15:19:35 GMT)
  • Kimi k1.5: Scaling Reinforcement Learning with LLMs [84.2]
    我々は、強化学習で訓練された最新のマルチモーダル言語モデル、Kimi k1.5の訓練実践について報告する。 長いコンテキストスケーリングと改善されたポリシー最適化手法が、我々のアプローチの鍵となる要素である。 本システムは,複数のベンチマークやモダリティに対して,最先端の推論性能を実現する。
    論文  参考訳(メタデータ)   (Wed, 22 Jan 2025 02:48:14 GMT)

Towards Large Reasoning Models: A Survey of Reinforced Reasoning with Large Language Models

  • Towards Large Reasoning Models: A Survey of Reinforced Reasoning with Large Language Models [33.1]
    大規模言語モデル(LLM)は、複雑な推論タスクに対処するためにそれらを活用することに大きな研究の関心を呼んだ。 最近の研究は、LLMがテスト時間推論中により多くのトークンで”考える”ことを奨励することは、推論の精度を著しく向上させることを示した。 OpenAIのo1シリーズの導入は、この研究の方向性において重要なマイルストーンである。
    論文  参考訳(メタデータ)   (Thu, 16 Jan 2025 17:37:58 GMT)
  • OpenAI o1ライクなモデル、Large Reasoning Modelsのサーベイ。「We begin by introducing the foundational background of LLMs and then explore the key technical components driving the development of large reasoning models, with a focus on automated data construction, learning-to-reason techniques, and test-time scaling.」とある通り包括的な内容。
  • 下記でも思ったが本当に進展が速い
  • O1 Replication Journey — Part 3: Inference-time Scaling for Medical Reasoning [27.8]
    この研究は、医学的推論タスクのための大規模言語モデル(LLM)における推論時間スケーリングの可能性を探るものである。 500サンプルを適度にトレーニングすることで,本モデルでは6%-11%の性能向上を実現した。
    論文  参考訳(メタデータ)   (Sat, 11 Jan 2025 07:10:23 GMT)
  • プロジェクトサイトはGitHub – SPIRAL-MED/Ophiuchus