コンテンツへスキップ
- Tell me why! — Explanations support learning of relational and causal structure [24.4]
説明は人間の学習において重要な役割を担い、特にAIにとって大きな課題が残る分野においてである。 我々は、強化学習エージェントが説明の恩恵を受ける可能性があることを示す。 我々の結果は、説明からの学習が強力な原則であり、より堅牢で一般的な機械学習システムのトレーニングに有望な道筋を提供することを示唆している。
論文 参考訳(メタデータ) (Wed, 8 Dec 2021 12:48:22 GMT)- 「説明」が強化学習のエージェントに恩恵を与えるかを検証した論文。エージェントは「説明」を予測することでその情報を取り入れるとの設定。「説明」はエージェントが簡単な特徴を好むバイアスの回避、あいまいな経験から分布外への一般化、因果構造を特定に効果があるとしている。
- AI in Games: Techniques, Challenges and Opportunities [40.9]
Libratus、OpenAI Five、AlphaStarといった様々なゲームAIシステムが開発され、プロの人間プレイヤーに勝っている。 本稿では,最近成功したゲームAI,ボードゲームAI,カードゲームAI,ファーストパーソンシューティングゲームAI,リアルタイム戦略ゲームAIについて調査する。
論文 参考訳(メタデータ) (Mon, 15 Nov 2021 09:35:53 GMT)- 碁のようなボードゲーム、テキサス・ホールデムのようなカードゲーム、FPS、リアルタイムストラテジーゲームと4種類のゲームとそのAIに関するサーベイ。ゲームは意思決定と密接に関わっており、応用範囲は広い印象。
- Mastering Atari Games with Limited Data [73.6]
我々は,MuZero上に構築したモデルベースビジュアルRLアルゴリズムのサンプルを提案し,これをEfficientZeroと呼ぶ。 提案手法は,Atari 100kベンチマークで平均190.4%の人的パフォーマンスを達成し,実戦経験は2時間に過ぎなかった。 アルゴリズムがそのような小さなデータでアタリゲーム上で超人的パフォーマンスを達成するのは、これが初めてである。
論文 参考訳(メタデータ) (Sat, 30 Oct 2021 09:13:39 GMT) - DQNが2億フレームで到達する性能を、その500分の1のフレーム数で達成できる強化学習のアルゴリズム。
- リポジトリはhttps://github.com/YeWR/EfficientZero/
- Applications of Multi-Agent Reinforcement Learning in Future Internet: A Comprehensive Survey [45.8]
マルチエージェント強化学習(MARL)により、各ネットワークエンティティは環境だけでなく、他のエンティティのポリシーも観察することで、最適なポリシーを学ぶことができる。 MARLはネットワークエンティティの学習効率を大幅に向上させることができ、近年、新興ネットワークにおける様々な問題を解決するために使用されている。
論文 参考訳(メタデータ) (Tue, 26 Oct 2021 08:26:55 GMT)- 5Gやその先にあるようなネットワークでマルチエージェントな強化学習で何が必要か、どのような研究課題があるかをまとめたサーベイ。研究課題については既存アプローチが整理されており非常に勉強になる。
- Recursively Summarizing Books with Human Feedback [10.1]
本論では,小説全体の抽象的要約の課題について述べる。 タスクの小さな部分でトレーニングされたモデルを使用して、より広範なタスクに対するフィードバックの提供を支援します。 書籍長要約のための最近のBookSumデータセットについて,最先端の成果を得た。
論文 参考訳(メタデータ) (Wed, 22 Sep 2021 17:34:18 GMT)- 本のセクションを要約、それらをさらに要約して本全体の要約を作成する方針の研究。それ自体はシンプルなアプローチだが、GPT-3(family)の使用、人間のラベラーのフィードバックを強化学習に利用など詳細な手法が興味深い。
- 「We chose narrative fiction books due to our belief that they were the most difficult to summarize, which is supported by our later qualitative findings (Appendix J).」というのも面白い。ELYZA digestとかでも難しいとされていた気がする。
- The AI Economist: Optimal Economic Policy Design via Two-level Deep Reinforcement Learning [126.4]
機械学習に基づく経済シミュレーションは強力な政策・メカニズム設計の枠組みであることを示す。 AIエコノミスト(AI Economist)は、エージェントと共同適応するソーシャルプランナーの両方を訓練する2段階のディープRLフレームワークである。 単純な一段階の経済では、AIエコノミストは経済理論の最適税制を再現する。
論文 参考訳(メタデータ) (Thu, 5 Aug 2021 17:42:35 GMT)
- Building a Foundation for Data-Driven, Interpretable, and Robust Policy Design using the AI Economist [67.1]
AIエコノミストフレームワークは,2段階強化学習とデータ駆動型シミュレーションを用いて,効果的な,柔軟な,解釈可能なポリシー設計を可能にする。 RLを用いて訓練されたログリニア政策は、過去の結果と比較して、公衆衛生と経済の両面から社会福祉を著しく改善することがわかった。
論文 参考訳(メタデータ) (Fri, 6 Aug 2021 01:30:41 GMT)
- SocialAI: Benchmarking Socio-Cognitive Abilities in Deep Reinforcement Learning Agents [23.7]
人間との社会的相互作用に参加することができる、具体化された自律エージェントを構築することは、AIの主要な課題の1つだ。 人間レベルのAIを目指すためには、より広範な社会的スキルが必要である、と私たちは主張する。 DRLエージェントの社会的スキル獲得を評価するためのベンチマークであるSocialAIを提案する。
論文 参考訳(メタデータ) (Fri, 2 Jul 2021 10:39:18 GMT) - DRL(Deep Reinforcement Learning)のための社会的スキル獲得を評価するベンチマーク。Intertwinded multimodality、 Theory of Mind(ToM)、 Pragmatic framesといったソーシャルスキルに関連するタスクを設定。
- 詳細はhttps://sites.google.com/view/socialaiから確認可能
- Reinforcement Learning as One Big Sequence Modeling Problem [84.8]
強化学習(Reinforcement Learning, RL)は、通常、単一ステップポリシーや単一ステップモデルの推定に関係している。 我々は、RLをシーケンスモデリング問題とみなし、高い報酬のシーケンスにつながる一連のアクションを予測することを目標としている。
論文 参考訳(メタデータ) (Thu, 3 Jun 2021 17:58:51 GMT)- 強化学習を系列データのモデリング問題として扱うという論文。前回のものと同じ発想。前とは別グループっぽいので有用なアプローチなのかもしれない。
- Decision Transformer: Reinforcement Learning via Sequence Modeling [102.9]
本稿では,シーケンスモデリング問題として強化学習(RL)を抽象化するフレームワークを提案する。RLを条件付きシーケンスモデルとして扱うアーキテクチャであるDecision Transformerを提案する。 その単純さにもかかわらず、Decision Transformerは、Atari、OpenAI Gym、Key-to-Doorタスク上での最先端のオフラインRLベースラインのパフォーマンスと一致または超過する。
論文 参考訳(メタデータ) (Wed, 2 Jun 2021 17:53:39 GMT)- 強化学習のタスクを言語モデル風に解くという論文。性能が良く、強化学習の一部にTransformerを使うというアーキテクチャでもないのが驚き。MLPで良いのでは?という論文も出ているが、やはりTransformerは優れた構造なのかなと思う。
- DeepQAMVS: Query-Aware Hierarchical Pointer Networks for Multi-Video Summarization [127.2]
DeepQAMVSと呼ばれるマルチビデオ要約のための新しいQuery-Aware階層型ポインタネットワークを紹介します。 DeepQAMVSは強化学習で訓練され、代表性、多様性、クエリ適応性、時間的コヒーレンスを捉えた報酬を取り入れている。 MVS1Kデータセットで最新の結果を達成し、入力されたビデオフレームの数と線形に推論時間をスケーリングします。
論文 参考訳(メタデータ) (Thu, 13 May 2021 17:33:26 GMT)- 究極的なマルチモーダルであると同時に、強化学習のフレームワークを利用して性能を出している点が興味深い。