コンテンツへスキップ
- Less is More: Data Value Estimation for Visual Instruction Tuning [127.4]
視覚的命令データにおける冗長性を除去する新しいデータ選択手法を提案する。 LLaVA-1.5の実験では、約7.5%のデータしか使用していないアプローチが、フルデータ微調整モデルと同等の性能を達成できることが示されている。
論文 参考訳(メタデータ) (Thu, 14 Mar 2024 16:47:25 GMT)
- visual instruction datasetには不要・冗長なデータが多く含まれており、その重要性を評価して削減する手法を提案。「using only about 7.5% data can achieve comparable performance as the full-data fine-tuned model across seven benchmarks, even surpassing it on four of the benchmarks.」とのことで、非常に効果的に見える。
- 「Our code and data will be publicly released.」らしい
- Large Multimodal Agents: A Survey [78.8]
大規模言語モデル(LLM)は、テキストベースのAIエージェントのパワーで優れたパフォーマンスを実現している。 LLMを利用したAIエージェントをマルチモーダルドメインに拡張することに焦点を当てた、新たな研究トレンドがある。 本総説は, この急速に発展する分野において, 今後の研究に有用な洞察とガイドラインを提供することを目的としている。
論文 参考訳(メタデータ) (Fri, 23 Feb 2024 06:04:23 GMT)
- 研究が流行っているLLM&マルチモーダル&エージェントのサーベイ
- リポジトリも参考になる jun0wanan/awesome-large-multimodal-agents (github.com)
- The (R)Evolution of Multimodal Large Language Models: A Survey [48.6]
MLLM(Multimodal Large Language Models)は、視覚とテキストのモダリティを、入力と出力の両方としてシームレスに統合することができる。 本稿では,近年の視覚的MLLMのレビュー,アーキテクチャ選択,マルチモーダルアライメント戦略,トレーニング手法について述べる。
論文 参考訳(メタデータ) (Mon, 19 Feb 2024 19:01:01 GMT)
- マルチモーダルなLLMのサーベイ
- 本当にいっぱいあるなーという印象と、公開されているものが多いのも興味深い
- MM-LLMs: Recent Advances in MultiModal Large Language Models [51.5]
過去1年間で、MM-LLM(MultiModal Large Language Models)が大幅に進歩している。 MM-LLMのさらなる研究を促進するための総合的な調査を行う。
論文 参考訳(メタデータ) (Thu, 25 Jan 2024 03:46:15 GMT)
- マルチモーダルLLMのサーベイ
- SOTA-LLM、ベンチマーク結果表などとてもありがたい、一方ですぐ情報がアップデートされるのだろうなとも。。。
- プロジェクトサイトはhttps://mm-llms.github.io/とのことだが現状404
- SynCDR : Training Cross Domain Retrieval Models with Synthetic Data [90.5]
クロスドメイン検索では、同じ意味圏から2つの視覚領域にまたがるイメージを識別するためにモデルが必要である。 本稿では、これらの欠落したカテゴリの例をドメイン間で補うために合成データを生成するための簡単な解を提案する。 我々は、この翻訳のために訓練された2つのドメインと、プロンプトを介して大規模に訓練されたテキストから画像への拡散モデルを使用するドメインを比較した。
論文 参考訳(メタデータ) (Sun, 31 Dec 2023 08:06:53 GMT)
- クロスドメイン検索へのデータ合成の応用
- リポジトリはsamarth4149/SynCDR: Code for SynCDR (github.com)
- UniHuman: A Unified Model for Editing Human Images in the Wild [52.4]
実環境における画像編集の複数の側面に対処する統一モデルUniHumanを提案する。 モデルの生成品質と一般化能力を向上させるために,人間の視覚エンコーダからのガイダンスを利用する。 ユーザスタディでは、UniHumanは平均して77%のケースでユーザに好まれる。
論文 参考訳(メタデータ) (Fri, 22 Dec 2023 05:00:30 GMT)
- 人間の画像を編集するためのモデルの提案、Adobeがかかわっており、「 we curated 400K high-quality image-text pairs for training and collected 2K human image pairs for out-of-domain testing.」はさすが。
- ChartAssisstant: A Universal Chart Multimodal Language Model via Chart-to-Table Pre-training and Multitask Instruction Tuning [54.9]
ChartAssistantは、ユニバーサルチャートの理解と推論のためのビジョン言語モデルである。 タスク固有の微調整なしで、様々なチャートタスク間の競争性能を達成する。 その結果、OpenAIのGPT-4V(ision)を実世界のチャートデータで上回り、最先端のUniChart法よりも大きな性能向上を示した。
論文 参考訳(メタデータ) (Thu, 4 Jan 2024 17:51:48 GMT)
- こちらはチャートを扱える(Vision-Languageでチャートに特化した)マルチモーダルなLLM。特化しているからかGPT-4VやBardを大きく上回る性能。
- リポジトリはhttps://github.com/OpenGVLab/ChartAstとのことだが現時点では404。データセットを作っているのも大きな貢献だと思うので公開されるのが楽しみ。
- DocLLM: A layout-aware generative language model for multimodal document understanding [12.1]
本稿では,従来の大規模言語モデル(LLM)の軽量拡張であるDocLLMについて述べる。 本モデルは,空間配置構造を組み込むための境界ボックス情報にのみ焦点をあてる。 我々のソリューションは、すべてのタスクにまたがる16のデータセットのうち14のデータセットでSotA LLMよりも優れており、これまで見つからなかった5つのデータセットのうち4のデータセットで十分に一般化されていることを実証しています。
論文 参考訳(メタデータ) (Sun, 31 Dec 2023 22:37:52 GMT)
- bounding boxの情報を組み込んだLLM、画像への拡張よりも効率的とのこと。実装上有用なアプローチに思える。著者がJPMorgan AI Researchというのも興味深い。
- 「DocLLM is a multi-modal system that integrates lightweight visual information by utilizing the spatial positions and dimensions of text tokens obtained using OCR.」ということでbounding boxはOCRから得るのが前提ではあるが、テキストやブロック構造が得られる電子ファイルが使える場合はさらによく動きそう(非現実的な仮定でもない)。