UniversalRAG: Retrieval-Augmented Generation over Multiple Corpora with Diverse Modalities and Granularities
UniversalRAG: Retrieval-Augmented Generation over Multiple Corpora with Diverse Modalities and Granularities [53.8] UniversalRAGは異種情報源からの知識を多様さと粒度で検索・統合するための新しいRAGフレームワークである。 本稿では,最も適切なモダリティ固有コーパスを動的に識別し,その内部でターゲット検索を行うモダリティ対応ルーティング機構を提案する。 複数のモダリティにまたがる8つのベンチマークでUniversalRAGを検証する。 論文参考訳(メタデータ) (Tue, 29 Apr 2025 13:18:58 GMT)
マルチモーダルなRAGに対応するため「UniversalRAG dynamically determines the most suitable knowledge source to retrieve from, based on the modality requirement of the given query, then routes the retrieval process to the corresponding modality-specific corpus.」というアプローチ。ルーターは「Training-free Router(実験ではGPT-4o)」と「Trained Router (実験ではDistilBERT 、T5-Large)」が試されていて平均的にはTrained Routerが優勢に見える。