SimpleDeepSearcher: Deep Information Seeking via Web-Powered Reasoning Trajectory Synthesis 

  • SimpleDeepSearcher: Deep Information Seeking via Web-Powered Reasoning Trajectory Synthesis [90.0]
    Retrieval-augmented Generation (RAG) システムは複雑なディープ検索シナリオにおいて高度な大規模言語モデル(LLM)を持つ。 既存のアプローチでは、高品質なトレーニングトラジェクトリが欠如し、分散ミスマッチに苦しむ、重要な制限に直面しています。 本稿では,複雑なトレーニングパラダイムではなく,戦略的データエンジニアリングによるギャップを埋めるフレームワークであるSimpleDeepSearcherを紹介する。
    論文  参考訳(メタデータ)   (Thu, 22 May 2025 16:05:02 GMT)
  • 「Our approach synthesizes high-quality training data by simulating realistic user interactions in live web search environments, coupled with a multi-criteria curation strategy that optimizes the diversity and quality of input and output side.」、小規模なデータでも改善幅が大きいとのこと。
  • プロジェクトサイトはGitHub – RUCAIBox/SimpleDeepSearcher: SimpleDeepSearcher: Deep Information Seeking via Web-Powered Reasoning Trajectory Synthesis

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です