コンテンツへスキップ
- CodeQA: A Question Answering Dataset for Source Code Comprehension [82.6]
コードスニペットと質問が与えられたら、テキストによる回答を生成する必要がある。 CodeQAには、119,778の問合せペアを持つJavaデータセットと、70,085の問合せペアを持つPythonデータセットが含まれている。
論文 参考訳(メタデータ) (Fri, 17 Sep 2021 06:06:38 GMT)
- Improving Neural Machine Translation by Bidirectional Training [85.6]
我々は、ニューラルネットワーク翻訳のためのシンプルで効果的な事前学習戦略である双方向トレーニング(BiT)を提案する。 具体的には、初期モデルのパラメータを双方向に更新し、正常にモデルを調整する。 実験の結果,BiTは8つの言語対上の15の翻訳タスクに対して,SOTAニューラルマシン翻訳性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) 参考訳(全文) (Thu, 16 Sep 2021 07:58:33 GMT)- 「src→target」という構成を「src + target → target + src」に変更して事前学習を行う(BiT)だけで翻訳性能が向上するとの報告。事前学習結果は言語対が逆になっても(例えばEn→De、De→En双方で)使用可能とのこと。データ数に関わらずBLEUで1ポイント以上の効果があるデータセットもあって有用そう。
- Scaling Laws for Neural Machine Translation [21.8]
モデルサイズ関数としてのクロスエントロピー損失は, あるスケーリング法則に従うことを示す。 また,クロスエントロピー損失と翻訳の質との関係についても検討した。
論文 参考訳(メタデータ) (Thu, 16 Sep 2021 06:15:20 GMT)- ニューラル機械翻訳におけるモデルサイズとモデル品質の関係を検証した論文。エンコーダとデコーダに着目した場合はそれなりにうまくいく式が導出できたとのこと(逆に言うとモデル内パラメータ総数との関係は十分に明らかとは言えない)。それによって最適なサイズを決められる。
- デコーダの層数よりもエンコーダの層数を多くした方が良いのでは?という議論が裏付けられている。
- Target言語→Src言語でテストセットを作った場合はモデルサイズの増加がlossとBLEU双方が改善され、逆の場合はlossが改善する一方でBLEUの改善は頭打ちになる。
- 機械翻訳の多様性の欠如を示しているのでは。とのこと。(同時にBack Translationが一定程度有効という裏付けでもある。)
- WEBからのクロールデータで機械翻訳モデルを作る際、WEBデータに機械翻訳によるテキストが多数入っている事の問題も指摘している。特にリソースの少ない言語ではすでに問題になっているとの指摘。
- FuguMTではある程度はフィルタリングしている。テキストの類似性を見るようなアプローチは効果が薄く、URLや原文の構成単語に頼る方がよかったりするので簡単ではないとの印象。
- 機械翻訳を行っているサイトにつけるフラグとかあったら知りたい。