MATE(Multi-view Attention for Table transformer Efficiency): 大きなテーブルを含む文書をモデル化

  • MATE: Multi-view Attention for Table Transformer Efficiency [21.5]
    ウェブ上のリレーショナルテーブルの20%以上が20行以上の行を持っている。 現在のTransformerモデルは一般的に512トークンに制限されている。 本稿では,Webテーブルの構造をモデル化する新しいトランスフォーマーアーキテクチャであるMATEを提案する。
    論文  参考訳(メタデータ)   (Thu, 9 Sep 2021 14:39:30 GMT)
    • WEBページなどによくあるテーブル構造をモデル化可能な(シーケンス長が長く効率的な)transformerモデルを提案、HybridQAなどでsotaとのこと。
    • 一般的に表形式データが混在したWEBページの扱いは難しいのでこの研究には興味津々。

Talk-to-Edit: 対話による顔編集

  • Talk-to-Edit: Fine-Grained Facial Editing via Dialog [79.9]
    Talk-to-Editは対話型顔編集フレームワークで、ユーザーとシステム間の対話を通じて微粒な属性操作を行う。 我々の重要な洞察は、GANラテント空間における連続的な「セマンティックフィールド」をモデル化することである。 本システムは,ユーザからの要求とセマンティックフィールドの状態の両方を考慮し,言語フィードバックを生成する。
    論文  参考訳(メタデータ)   (Thu, 9 Sep 2021 17:17:59 GMT)
    • 自然なやりとりによって(例えば「もう少し笑って」と入力)顔画像を編集するフレームワークを提案、より連続的に変化させられるモデルを構築できたとのこと。システム実現のため自然言語と画像の組み合わせであるCelebA-Dialogというデータセットを作成、公開している。
    • プロジェクトサイトはhttps://www.mmlab-ntu.com/project/talkedit/、画像を見るとどのようなものかよく分かる。リポジトリはhttps://github.com/yumingj/Talk-to-Edit、Colabでモデルを試すことも可能でとても面白い。

HintedBT: Back Translationの効率化

  • HintedBT: Augmenting Back-Translation with Quality and Transliteration Hints [7.5]
    標的単言語コーパスのバックトランスレーションは、ニューラルマシン翻訳(NMT)に広く用いられているデータ拡張戦略である 私たちは、エンコーダとデコーダにヒント(タグを通して)を提供するテクニックのファミリーであるHintedBTを紹介します。 これらのヒントを別々に使用することで翻訳品質が大幅に向上することを示す。
    論文  参考訳(メタデータ)  参考訳(全文)  (Thu, 9 Sep 2021 17:43:20 GMT)
    • 高品質BTデータと低品質BTデータについてタグを付与することによりBack Translationの有効性を上げられるとの報告。LaBSEによるHintが有効とのことでマルチリンガルな分散表現の活用は有効のよう。(FuguMTでも使わせてもらっている)