FewNLU: Few-Shotな自然言語理解タスクの評価フレームワーク

  • FewNLU: Benchmarking State-of-the-Art Methods for Few-Shot Natural Language Understanding [89.9]
    本稿では,従来の評価手順を,テスト性能,開発-テスト相関,安定性の3つの重要な側面で改善する評価フレームワークを提案する。 評価フレームワークを実装したツールキットFewNLUと、最先端のメソッドをオープンソースとして公開しています。
    論文  参考訳(メタデータ)   (Mon, 27 Sep 2021 00:57:30 GMT)
    • Few-shot性能を評価するためのフレームワークを提案。データ分割戦略、ハイパーパラメータの扱い(promptの扱い)など様々な側面で検討を行っている。
      • (k-fold CVよりMulti Splitの方が良いのはやや意外)
    • リポジトリはhttps://github.com/THUDM/FewNLU、プロジェクトサイトはhttps://fewnlu.github.io/でリーダーボードも存在。

XLM-K: multilingual Knowledgeを取り入れた多言語事前学習モデル

  • XLM-K: Improving Cross-Lingual Language Model Pre-Training with Multilingual Knowledge [31.8]
    言語間事前学習は単言語とバイリンガルの平文コーパスを用いて大きな成功を収めた。 本稿では,事前学習に多言語知識を取り入れたクロス言語モデルXLM-Kを提案する。
    論文  参考訳(メタデータ)   (Sun, 26 Sep 2021 11:46:20 GMT)
    • 多言語プリトレーニングをMasked Entity Prediction TaskとObject Entailment Taskで強化、言語間の転移性能が向上したとの報告。mBERTやXLM-Rを上回る性能。