機械学習における安全性の未解決問題

  • Unsolved Problems in ML Safety [45.8]
    研究の準備ができている4つの問題、すなわち、ハザードを克服し、ハザードを特定し、MLシステムを操り、MLシステムの扱い方に対するリスクを低減する。 それぞれの問題のモチベーションを明確にし、具体的な研究指針を提供する。
    論文  参考訳(メタデータ)   (Tue, 28 Sep 2021 17:59:36 GMT)
    • 機械学習利用時の問題を「Robustness: 敵対攻撃、異常な状況、レアなイベントに対する頑健性」「Monitoring: 悪意のある利用の検知、予測の監視、予期せぬ動きの検出」「Alignment:正しい (人間的な)目的の設定と安全な最適化」「External safety: サイバー攻撃への対策などMLシステム利用時のリスク低減」に分けて整理した論文。Appendix部分を含めてとても良い。

PASS(Pictures without humAns for Self-Supervision) : 著作権や個人情報に配慮したデータセット

  • PASS: An ImageNet replacement for self-supervised pretraining without humans [152.3]
    本稿ではPASS(Pictures without humAns for Self-Supervision)を提案する。 PASSは、CC-BYライセンスのイメージと、著作権問題に対処する完全な属性メタデータのみを含む。 PASS は MoCo-v2, SwAV, DINO などの手法で事前訓練できることを示す。 PASSは、例えばベンチマークに不十分なため、既存のデータセットを陳腐化しない。しかしながら、より安全なデータを使用して、モデル事前トレーニングがしばしば可能であることを示し、事前トレーニングメソッドをより堅牢に評価する基盤を提供する。
    論文  参考訳(メタデータ)  参考訳(全文)  (Mon, 27 Sep 2021 17:59:39 GMT)
    • 著作権/ライセンスに問題がなく(Creative Commonsの CC BY)、人物画像を含まないデータセットの提案。ラベルが無いという制約はあるものの、このようなデータセットは実務上ありがたい。
    • プロジェクトサイトはhttps://www.robots.ox.ac.uk/~vgg/research/pass/