EASE(Entity-Aware contrastive learning of Sentence Embeddings)

  • EASE: Entity-Aware Contrastive Learning of Sentence Embedding [37.7]
    EASEは文とその関連エンティティ間の対照的な学習を通して文の埋め込みを学習する新しい方法である。 EASEは英語のセマンティックテキスト類似性(STS)と短いテキストクラスタリング(STC)タスクにおいて、競合的あるいはより良いパフォーマンスを示す。
    論文  参考訳(メタデータ)   (Mon, 9 May 2022 13:22:44 GMT)
    • エンティティ情報を活用した文の分散表現化。マルチリンガル設定を含むSTC/STSで優れた性能を達成とのこと。
    • リポジトリはGitHub – studio-ousia/ease

音声キャプショニングのサーベイ

  • Automated Audio Captioning: an Overview of Recent Progress and New Challenges [57.0]
    自動音声キャプションは、与えられた音声クリップの自然言語記述を生成することを目的とした、モーダル横断翻訳タスクである。 本稿では、既存の様々なアプローチから評価指標やデータセットまで、自動音声キャプションにおけるコントリビューションの総合的なレビューを行う。
    論文  参考訳(メタデータ)   (Thu, 12 May 2022 08:36:35 GMT)
    • Audio Captioningのサーベイ。とても大事なタスクである一方でimage captioningやvideo captioningに比べて歴史が浅い(2017~)というのに驚いた。