抽出型要約も忠実ではない

  • Extractive is not Faithful: An Investigation of Broad Unfaithfulness Problems in Extractive Summarization [91.9]
    本研究は,抽出要約に現れる5種類の広い不信問題を持つ類型論を定義する。 我々は15の多様な抽出システムによって生成された1500の英語の要約の中から、これらの問題をラベル付けするよう人間に求めている。 これらの問題を自動検出するために,要約のための既存の5つの信頼度評価指標は,人間の判断と相関が低いことがわかった。
    論文  参考訳(メタデータ)   (Thu, 8 Sep 2022 03:25:18 GMT)
    • 一般的に抽象型要約よりも抽出型要約の要約の方が意味的な忠実度が高いと思われているが、人間による大規模検証によるとそうでもないという結果。
    • 既存の各種評価指標との対応を見ると要約の自動評価簡単ではないなーという印象。
    • ZhangShiyue/extractive_is_not_faithful (github.com)

Fengshenbang : 中国のFoundationモデル構築プロジェクト

  • Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence [34.5]
    我々は,認知コンピューティング・自然言語研究センター(CCNL)が主導するFengshenbangというオープンソースプロジェクトを紹介した。 私たちのプロジェクトには、大規模な事前トレーニングモデル、ユーザフレンドリなAPI、ベンチマーク、データセットなど、包括的な機能があります。 オープンソースロードマップであるFengshenbangは、中国の事前訓練された大規模モデルのオープンソースコミュニティを再評価することを目的としている。
    論文  参考訳(メタデータ)   (Wed, 7 Sep 2022 07:32:37 GMT)